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Probability Amplitudes

3-1 The laws for combining amplitudes

When Schradinger first discovered the correct laws of quantum mechanics,
he wrote an equation which described the amplitude to find a particle in various
places. This equation was very similar to the equations that were already known
to classical physicists—equations that they had used in describing the motion of
air in a sound wave, the transmission of light, and so on. So most of the time at
the beginning of quantum mechanics was spent in solving this equation. But at the
same time an understanding was being developed, particularly by Born and Dirac,
of the basically new physical ideas behind quantum mechanics. As quantum
mechanics developed further, it turned out that there were a large number of things
which were not directly encompassed in the Schrddinger equation—such as the
spin of the electron, and various relativistic phenomena. Traditionally, all courses
in quantum mechanics have begun in the same way, retracing the path followed in
the historical development of the subject. One first learns a great deal about clas-
sical mechanics so that he will be able to understand how to solve the Schrodinger
equation. Then he spends a long time working out various solutions. Only after
a detailed study of this equation does he get to the “advanced” subject of the
electron’s spin.

We had also originally considered that the right way to conclude these lectures
on physics was to show how to solve the equations of classical physics in compli-
cated situations—such as the description of sound waves in enclosed regions, modes
of electromagnetic radiation in cylindrical cavities, and so on. That was the original
plan for this course. However, we have decided to abandon that plan and to give
instead an introduction to the quantum mechanics. We have come to the con-
clusion that what are usually called the advanced parts of quantum mechanics are,
in fact, quite simple. The mathematics that is involved is particularly simple,
involving simple algebraic operations and no differential equations or at most
only very simple ones. The only problem is that we must jump the gap of no
longer being able to describe the behavior in detail of particles in space. So this
is what we are going to try to do: to tell you about what conventionally would be
called the “advanced” parts of quantum mechanics. But they are, we assure you,
by all odds the simplest parts—in a deep sense of the word—as well as the most
basic parts. This is frankly a pedagogical experiment; it has never been done
before, as far as we know.

In this subject we have, of course, the difficulty that the quantum mechanical
behavior of things is quite strange. Nobody has an everyday experience to lean
on to get a rough, intuitive idea of what will happen. So there are two ways of
presenting the subject: We could either describe what can happen in a rather
rough physical way, telling you more or less what happens without giving the
precise laws of everything; or we could, on the other hand, give the precise laws
in their abstract form. But, then because of the abstractions, you wouldn’t know
what they were all about, physically. The latter method is unsatisfactory because
it is completely abstract, and the first way leaves an uncomfortable feeling because
one doesn’t know exactly what is true and what is false. We are not sure how to
overcome this difficulty. You will notice, in fact, that Chapters | and 2 showed
this problem. The first chapter was relatively precise; but the second chapter was
a rough description of the characteristics of different phenomena. Here, we will
try to find a happy medium between the two extremes.
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3-1. Interference experiment with electrons.

We will begin in this chapter by dealing with some general quantum me-
chanical ideas. Some of the statements will be quite precise, others only partially
precise. 1t will be hard to tell you as we go along which is which, but by the time
you have finished the rest of the book, you will understand in looking back which
parts hold up and which parts were only explained roughly. The chapters which
follow this one will not be so imprecise. In fact, one of the reasons we have tried
carefully to be precise in the succeeding chapters is so that we can show you one of
the most beautiful things about quantum mechanics—how much can be deduced
from so little.

We begin by discussing again the superposition of probability amplitudes.
As an example we will refer to the experiment described in Chapter |, and shown
again here in Fig. 3-1. There is a source s of particles, say electrons; then there
is a wall with two slits in it; after the wall, there is a detector located at some
position x. We ask for the probability that a particle will be found at x. Our first
general principle in quantum mechanics is that the probability that a particle will
arrive at x, when let out at the source s, can be represented quantitatively by the
absolute square of a complex number called a probability amplitude—in this case,
the “amplitude that a particle from s will arrive at x.” We will use such amplitudes
so frequently that we will use a shorthand notation—invented by Dirac and
generally used in quantum mechanics—to represent this idea. We write the proba-
bility amplitude this way:

(Particle arrives at x | particle leaves ). (3.1)

In other words, the two brackets { ) are a sign equivalent to *‘the amplitude that™;
the expression at the right of the vertical line always gives the starting condition,
and the one at the left, the final condition. Sometimes it will also be convenient to
abbreviate still more and describe the initial and final conditions by single letters.
For example, we may on occasion write the amplitude (3.1) as

(x| s). (3.2)

We want to emphasize that such an amplitude is, of course, just a single number—
a complex number. .

We have already seen in the discussion of Chapter 1 that when there are two
ways for the particle to reach the detector, the resulting probability is not the
sum of the two probabilities, but must be written as the absolute square of the
sum of two amplitudes. We had that the probability that an electron arrives at the
detector when both paths are open is

Py = |1 + ¢2% 3.3)
3-2
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Fig. 3-2. A more complicated inter-
b ference experiment.

We wish now to put this result in terms of our new notation. First, however, we
want to state our second general principle of quantum mechanics: When a particle
can reach a given state by two possible routes, the total amplitude for the process
is the sum of the amplitudes for the two routes considered separately. In our new
notation we write that

<.X l S)both holes open = <X | s)through 1+ <X | S>thr0ugh 2- 3.4

Incidentally, we are going to suppose that the holes 1 and 2 are small enough that
when we say an electron goes through the hole, we don’t have to discuss which part
of the hole. We could, of course, split each hole into pieces with a certain amplitude
that the electron goes to the top of the hole and the bottom of the hole and so on.
We will suppose that the hole is small enough so that we don’t have to worry about
this detail. That is part of the roughness involved; the matter can be made more
precise, but we don’t want to do so at this stage.

Now we want to write out in more detail what we can say about the amplitude
for the process in which the electron reaches the detector at x by way of hole 1.
We can do that by using our third general principle: When a particle goes by some
particular route the amplitude for that route can be written as the product of the
amplitude to go part way with the amplitude to go the rest of the way. For the
setup of Fig. 3—1 the amplitude to go from s to x by way of hole 1 is equal to the
amplitude to go from s to 1, multiplied by the amplitude to go from 1 to x.

(] shvia 1 = (x1IXL]s). (3.5

Again this result is not completely precise. We should also include a factor for the
amplitude that the electron will get through the hole at 1; but in the present case
it is a simple hole, and we will take this factor to be unity.

You will note that Eq. (3.5) appears to be written in reverse order. It is to
be read from right to left: The electron goes from s to 1 and then from 1 to x.
In summary, if events occur in succession—that is, if you can analyze one of the
routes of the particle by saying it does this, then it does this, then it does that—the
resultant amplitude for that route is calculated by multiplying in succession the
amplitude for each of the successive events. Using this law we can rewrite Eq.
(3.4) as

(x| Shoth = x| 1| s) + (x| 2)2]s).

Now we wish to show that just using these principles we can calculate a much
more complicated problem like the one shown in Fig. 3-2. Here we have two
walls, one with two holes, 1 and 2, and another which has three holes, a, 4, and c.
Behind the second wall there is a detector at x, and we want to know the amplitude
for a particle to arrive there. Well, one way you can find this is by calculating the
superposition, or interference, of the waves that go through; but you can also do
it by saying that there are six possible routes and superposing an amplitude for
each. The electron can go through hole 1, then through hole q, and then to x; or
it could go through hole 1, then through hole 4, and then to x; and so on. Accord-
ing to our second principle, the amplitudes for alternative routes add, so we should
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be able to write the amplitude from s to x as a sum of six separate amplitudes.
On the other hand, using the third principle, each of these separate amplitudes
can be written as a product of three amplitudes. For example, one of them is the
amplitude for s to 1, times the amplitude for 1 to g, times the amplitude for a to x.
Using our shorthand notation, we can write the complete amplitude to go from
s 10 x as

(xlsy = {xlaXa| 11| sy + (x[BXE [ IXLs) + -+ + (x|eXe 212 s).
We can save writing by using the summation notation

(xls) = D (x|a)ea|iXi]s). (3.6)

i=1,2
a=a.b,c
In order to make any calculations using these methods, it is, naturally, neces-
sary to know the amplitude to get from one place to another. We will give a rough
idea of a typical amplitude. It leaves out certain things like the polarization of
light or the spin of the electron, but aside from such features it is quite accurate.
We give it so that you can solve problems involving various combinations of slits.
Suppose a particle with a definite energy is going in empty space from a location
rytoalocationry. In other words, it is a free particle with no forces on it. Except
for a numerical factor in front, the amplitude to go from r; to rg is

iPeryglfi
e’ 12/

ro|ry) = —
(ra|r:) "1z

) 3.7

where 13 = ry — ry, and p is the momentum which is related to the energy F
by the relativistic equation

pie? = E? = (moe)?,
or the nonrelativistic equation

P2

5 = Kinetic energy.
Equation (3.7) says in effect that the particle has wavelike properties, the amplitude
propagating as a wave with a wave number equal to the momentum divided by 4.

In the most general case, the amplitude and the corresponding probability
will also involve the time. For most of these initial discussions we will suppose
that the source always emits the particles with a given energy so we will not need to
worry about the time. But we could, in the general case, be interested in some
other questions. Suppose that a particle is liberated at a certain place P at a certain
time, and you would like to know the amplitude for it to arrive at some location,
say », at some later time. This could be represented symbolically as the amplitude
(r,t = 1| P,t = 0). Clearly, this will depend upon both r and r. You will get
different results if you put the detector in different places and measure at different
times. This function of r and ¢, in general, satisfies a differential equation which is
a wave equation. For example, in a nonrelativistic case it is the Schrodinger equa-
tion. One has then a wave equation analogous to the equation for electromagnetic
waves or waves of sound in a gas. However, it must be emphasized that the wave
function that satisfies the equation is not like a real wave in space; one cannot
picture any kind of reality to this wave as one does for a sound wave.

Although one may be tempted to think in terms of “particle waves” when
dealing with one particle, it is not a good idea, for if there are, say, two particles,
the amplitude to find one at r; and the other at r5 is not a simple wave in three-
dimensional space, but depends on the six space variables ry and ro. If we are,
for example, dealing with two (or more) particles, we will need the following
additional principle: Provided that the two particles do not interact, the amplitude
that one particle will do one thing and the other one something else is the product
of the two amplitudes that the two particles would do the two things separately.
For example, if (a | s1) is the amplitude for particle 1 to go from s, to a, and (b | s2)
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is the amplitude for particle 2 to go from s, to b, the amplitude that both things
will happen together is

(a]s1)b | s2).

There is one more point to emphasize. Suppose that we didn’t know where
the particles in Fig. 3-2 come from before arriving at holes 1 and 2 of the first
wall. We can still make a prediction of what will happen beyond the wall (for
example, the amplitude to arrive at x) provided that we are given two numbers:
the amplitude to have arrived at 1 and the amplitude to have arrived at 2. In other
words, because of the fact that the amplitude for successive events multiplies, as
shown in Eq. (3.6), all you need to know to continue the analysis is two numbers—
in this particular case {1 | s) and (2 | s). These two complex numbers are enough
to predict all the future. That is what really makes quantum mechanics easy. It
turns out that in later chapters we are going to do just such a thing when we specify
a starting condition in terms of two (or a few) numbers. Of course, these numbers
depend upon where the source is located and possibly other details about the
apparatus, but given the two numbers, we do not need to know any more about
such details.

74
I
= ’ fhe -5
ELECTRON T -Es
GUN 2

Fig. 3-3. An experiment to detfer-
mine which hole the electron goes through.

i

)

|
IR

3-2 The two-slit interference pattern

Now we would like to consider a matter which was discussed in some detail
in Chapter 1. This time we will do it with the full glory of the amplitude idea
to show you how it works out. We take the same experiment shown in Fig.
3-1, but now with the addition of a light source behind the two holes, as shown
in Fig. 3-3. In Chapter 1, we discovered the following interesting result. If
we looked behind slit 1 and saw a photon scattered from there, then the distribu-
tion obtained for the electrons at x in coincidence with these photons was the same
as though slit 2 were closed. The total distribution for electrons that had been .
“seen” at either slit 1 or slit 2 was the sum of the separate distributions and was
completely different from the distribution with the light turned off. This was true
at least if we used light of short enough wavelength. If the wavelength was made
longer so we could not be sure at which hole the scattering had occurred, the
distribution became more like the one with the light turned off.

Let’s examine what is happening by using our new notation and the principles
of combining amplitudes. To simplify the writing, we can again let ¢, stand for
the amplitude that the electron will arrive at x by way of hole 1, that is,

o1 = (x| IXIs).

Similarly, we’ll let ¢, stand for the amplitude that the electron gets to the detector
by way of hole 2:

$2 = (x[2)(2]s).

These are the amplitudes to go through the two holes and arrive at x if there is no
light. Now if there is light, we ask ourselves the question: What is the amplitude
for the process in which the electron starts at s and a photon is liberated by the
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light source L, ending with the electron at x and a photon secn behind slit 1?
Suppose that we observe the photon behind slit 1 by means of a detector D,, as
shown in Fig. 3-3, and use a similar detector D, to count photons scattered
behind hole 2. There will be an amplitude for a photon to arrive at D, and an
clectron at x, and also an amplitude for a photon to arrive at Dy and an electron
at x. Let’s try to calculate them.

Although we don’t have the correct mathematical formula for all the factors
that go into this calculation, you will see the spirit of it in the following discussion.
First, there is the amplitude (1 | s) that an electron goes from the source to hole 1.
Then we can suppose that there is a certain amplitude that while the electron is at
hole 1 it scatters a photon into the detector D;. Let us represent this amplitude by
a. Then there is the amplitude (x| 1) that the electron goes from slit 1 to the elec-
tron detector at x. The amplitude that the electron goes from s to x via slit | and
scatters a photon into D, is then

x| Dad]s).

Or, in our previous notation, it is just a¢,.

There is also some amplitude that an electron going through slit 2 will scatter
a photon into counter D;. You say, “That’s impossible; how can it scatter into
counter D, if it is only looking at hole 12" If the wavelength is long enough, there
are diffraction effects, and it is certainly possible. If the apparatus is built well and
if we use photons of short wavelength, then the amplitude that a photon will be
scattered into detector 1, from an electron at 2 is very small. But to keep the
discussion general we want to take into account that there is always some such
amplitude, which we will call 5. Then the amplitude that an electron goes via
slit 2 and scatters a photon into D is

(x|2)b(2]s) = bgo.

The amplitude to find the electron at x and the photon in D, is the sum of
two terms, one for each possible path for the electron. Each term is in turn made
up of two factors: first, that the electron went through a hole, and second, that the
photon is scattered by such an electron into detector 1; we have

<electron at x

electron from s\ _
photon at D, apy + be.. (3.8)

photon from L/

We can get a similar expression when the photon is found in the other detector
Dy. If we assume for simplicity that the system is symmetrical, then « is also the
amplitude for a photon in D, when an electron passes through hole 2, and b is
the amplitude for a photon in D, when the electron passes through hole I. The
corresponding total amplitude for a photon at D, and an electron at x is

/electron at x ! electron from s

\photon at D, | photon from L/ ~ apy + be. (3.9

Now we are finished. We can easily calculate the probability for various
situations. Suppose that we want to know with what probability we get a count
in D, and an electron at x. That will be the absolute square of the amplitude
given in Eq. (3.8), namely, just |ap; + b¢s|% Lel’s look more carefully at this
expression. First of all, if b is zero—which is the way we would like to design the
apparatus—then the answer is simply |¢4|> diminished in total amplitude by the
factor |a|%. This is the probability distribution that you would get if there were
only one hole—as shown in the graph of Fig. 3-4(a). On the other hand, if the
wavelength is very long, the scattering behind hole 2 into D may be just about
the same as for hole 1. Although there may be some phases involved in ¢ and b,
we can ask about a simple ease in which the two phases are equal. If @ is practically
equal to b, then the total probability becomes |¢; + ¢o/? multiplied by |a|?
since the common factor a can be taken out. This, however, is just the probability
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light source L, ending with the electron at x and a photon secn behind slit 1?
Suppose that we observe the photon behind slit 1 by means of a detector D,, as
shown in Fig. 3-3, and use a similar detector D, to count photons scattered
behind hole 2. There will be an amplitude for a photon to arrive at D; and an
clectron at x, and also an amplitude for a photon to arrive at Dy and an electron
at x. Let’s try to calculate them.

Although we don’t have the correct mathematical formula for all the factors
that go into this calculation, you will see the spirit of it in the following discussion.
First, there is the amplitude (1 | s) that an electron goes from the source to hole 1.
Then we can suppose that there is a certain amplitude that while the electron is at
hole 1 it scatters a photon into the detector D;. Let us represent this amplitude by
a. Then there is the amplitude (x| 1) that the electron goes from slit 1 to the elec-
tron detector at x. The amplitude that the electron goes from s to x via slit | and
scatters a photon into D, is then

x| Dal]s).

Or, in our previous notation, it is just aé,.

There is also some amplitude that an electron going through slit 2 will scatter
a photon into counter D;. You say, “That’s impossible; how can it scatter into
counter D, if it is only looking at hole 12" If the wavelength is long enough, there
are diffraction effects, and it is certainly possible. If the apparatus is built well and
if we use photons of short wavelength, then the amplitude that a photon will be
scattered into detector 1, from an electron at 2 is very small. But to keep the
discussion general we want to take into account that there is always some such
amplitude, which we will call 5. Then the amplitude that an electron goes via
slit 2 and scatters a photon into D is

(x|2)b(2]s) = bgo.

The amplitude to find the electron at x and the photon in D, is the sum of
two terms, one for each possible path for the electron. Each term is in turn made
up of two factors: first, that the electron went through a hole, and second, that the
photon is scattered by such an electron into detector 1; we have

<electron at x

electron from s\ _
photon at D, apy + be.. (3.8)

photon from L/

We can get a similar expression when the photon is found in the other detector
Dy. If we assume for simplicity that the system is symmetrical, then « is also the
amplitude for a photon in D, when an electron passes through hole 2, and b is
the amplitude for a photon in D, when the electron passes through hole 1. The
corresponding total amplitude for a photon at D, and an electron at x is

/electron at x ! electron from s

\photon at D, | photon from L/ ~ ady + bei. (3.9

Now we are finished. We can easily calculate the probability for various
situations. Suppose that we want to know with what probability we get a count
in D, and an electron at x. That will be the absolute square of the amplitude
given in Eq. (3.8), namely, just |ap; + b¢o|% Lel’s look more carefully at this
expression. First of all, if b is zero—which is the way we would like to design the
apparatus—then the answer is simply |¢4|> diminished in total amplitude by the
factor |a|%. This is the probability distribution that you would get if there were
only one hole—as shown in the graph of Fig. 3-4(a). On the other hand, if the
wavelength is very long, the scattering behind hole 2 into D may be just about
the same as for hole 1. Although there may be some phases involved in ¢ and b,
we can ask about a simple ease in which the two phases are equal. If @ is practically
equal to b, then the total probability becomes |¢; + ¢o/? multiplied by |a|?
since the common factor a can be taken out. This, however, is just the probability
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distribution we would have gotten without the photons at all. Therefore, in the
case that the wavelength is very long—and the photon detection ineffective—you
return to the original distribution curve which shows interference effects, as shown
in Fig. 3-4(b). In the case that the detection is partially effective, there is an inter-
ference between a lot of ¢; and a little of ¢, and you will get an intermediate
distribution such as is sketched in Fig. 3-4(c). Needless to say, if we look for
coincidence counts of photons at Dy and electrons at x, we will get the same kinds
of results. If you remember the discussion in Chapter 1, you will see that these
results give a quantitative description of what was described there.

Now we would like to emphasize an important point so that you will avoid
a common error. Suppose that you only want the amplitude that the electron ar-
rives at x, regardless of whether the photon was counted at D, or D,. Should you
add the amplitudes given in Egs. (3.8) and (3.9)? No! You must never add
amplitudes for different and distinct final states. Once the photon is accepted by
one of the photon counters, we can always determine which alternative occurred
if we want, without any further disturbance to the system. Each alternative has a
probability completely independent of the other. To repeat, do not add amplitudes
for different final conditions, where by “final” we mean at that moment the
probability is desired—that is, when the experiment is “finished.” You do add the
amplitudes for the different indistinguishable alternatives inside the experiment,
before the complete process is finished. At the end of the process you may say that
you “‘don’t want to look at the photon.” That’s your business, but you still do not
add the amplitudes. Nature does not know what you are looking at, and she
behaves the way she is going to behave whether you bother to take down the data
or not. So here we must not add the amplitudes. We first square the amplitudes
for all possible different final events and then sum. The correct result for an
electron at x and a photon at either D, or Dy is

/e at x 2

\ph at D1

e froms \
ph from L/

/e at x efroms \
\ph at D, | ph from L/

= lagy + bds|® + lads + boi|%.  (3.10)

2

3-3 Scattering from a crystal

Our next example is a phenomenon in which we have to analyze the inter-
ference of probability amplitudes somewhat carefully. We look at the process of
the scattering of neutrons from a crystal. Suppose we have a crystal which has a
lot of atoms with nuclei at their centers, arranged in a periodic array, and a neutron
beam that comes from far away. We can label the various nuclei in the crystal by
an index 7, where 7 runs over the integers 1, 2, 3,... N, with N equal to the total
number of atoms. The problem is to calculate the probability of getting a neutron
into a counter with the arrangement shown in Fig. 3-5. For any particular atom
i, the amplitude that the neutron arrives at the counter C is the amplitude that the
neutron gets from the source S to nucleus 7, multiplied by the amplitude a that it
gets scattered there, multiplied by the amplitude that it gets from i to the counter
C. Let’s write that down:

(neutron at C | neutron from S)yi, ; = (C|i)a (]| S). 3.11)

In writing this equation we have assumed that the scattering amplitude a is the
same for all atoms. We have here a large number of apparently indistinguishable
routes. They are indistinguishable because a low-energy neutron is scattered from
a nucleus without knocking the atom out of its place in the crystal—no “record”
is left of the scattering. According to the earlier discussion, the total amplitude
for a neutron at C involves a sum of Eq. (3.11) over all the atoms:

N
(neutron at C | neutron from S) = Y (C|i)a(i| S). (3.12)

=1
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Fig. 3-6. The neutron counting rate
as a function of angle: (a) for spin zero
nuclei; (b) the probability of scattering
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Because we are adding amplitudes of scattering from atoms with different space
positions, the amplitudes will have different phases giving the characteristic inter-
ference pattern that we have already analyzed in the case of the scattering of light
from a grating.

The neutron intensity as a function of angle in such an experiment is indeed
often found to show tremendous variations, with very sharp interference peaks
and almost nothing in between—as shown in Fig. 3-6(a). However, for certain
kinds of crystals it does not work this way, and there is—along with the interference
peaks discussed above—a general background of scattering in all directions. We
must try to understand the apparently mysterious reasons for this. Well, we have
not considered one important property of the neutron. It has a spin of one-half,
and so there are two conditions in which it can be: either spin “up” (say perpendicu-
lar to the page in Fig. 3-5) or spin “down.” If the nuclei of the crystal have no
spin, the neutron spin doesn't have any effect. But when the nuclei of the crystal
also have a spin, say a spin of one-half, you will observe the background of smeared-
out scattering described above. The explanation is as follows.

If the neutron has one direction of spin and the atomic nucleus has the same
spin. then no change of spin can occur in the scattering process. If the neutron and
atomic nucleus have opposite spin, then scattering can occur by Lwo processes,
one in which the spins are unchanged and another in which the spin directions are
exchanged. This rule for no net change of the sum of the spins is analogous to our
classical law of conservation of angular momentum. We can begin to understand
the phenomenon if we assume that all the scattering nuclei are set up with spins in
one direction. A neutron with the same spin will scatter with the expected sharp
interference distribution. What about one with opposite spin? If it scatters without
spin flip, then nothing is changed from the above; but if the two spins flip over in
the scattering, we could, in principle, find out which nucleus had done the scatter-
ing, since it would be the only one with spin turned over. Well, if we can tell which
atom did the scattering, what have the other atoms got to do with it? Nothing, of
course. The scattering is exactly the same as that from a single atom.

To include this effect, the mathematical formulation of Eq. (3.12) must be
modified since we haven’t described the states completely in that analysis. Let’s
start with all neutrons from the source having spin up and all the nuclei of the
crystal having spin down. First, we would like the amplitude that at the counter
the spin of the neutron is up and all spins of the crystal are still down. This is
not different from our previous discussion. We will let ¢ be the amplitude to
scatter with no flip or spin. The amplitude for scattering [rom the ith atom is, of
course,

(Cups crystal all down | Sy, crystal all down) — (C | i) a (i | S).

Since all the atomic spins are still down. the various alternatives (different values
of i) cannot be distinguished. There is clearly no way to tcll which atom did the
scattering. For this process, all the amplitudes interfere.

We have another case, however, where the spin of the detected neutron is
down although it started from S with spin up. In the crystal, one of the spins must
be changed to the up direction—let’s say that of the kth atom. We will assume that
there is the same scattering amplitude with spin flip for every atom, namely 5.
(In a real crystal there is the disagreeablc possibility that the reversed spin moves
to some other atom, but let’s take the case of a crystal for which this probability
is very low.) The scattering amplitude is then

(Ciown, nucleus k up Sy, crystal all down) = (C| k)b (K|S).  (3.13)

If we ask for the probability of finding the neutron spin down and the kth nucleus
spin up, it is equal to the absolute square of this amplitude, which is simply |6]2
times |(C | k){k | S}|%. The second factor is almost independent of location in the
crystal, and all phases have disappeared in taking the absolute square. The
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probability of scattering from wny nucleus in the crystal with spin flip is now

N
161* 22 KC TRk | S,
k=1
which will show a smooth distribution as in Fig. 3-6(b).

You may argue, “I don’t care which atom is up.” Perhaps you don’t, but
nature knows; and the probability is, in fact, what we gave above—there isn’t any
interference. On the other hand, if we ask for the probability that the spin is up at
the detector and all the atoms still have spin down, then we must take the absolute
square of

S (ClDali]S).

=1

Since the terms in this sum have phases, they do interfere, and we get a sharp
interference pattern. 1If we do an experiment in which we don’t observe the spin
of the detected neutron, then both kinds of events can occur: and the separate
probabilities add. The total probability (or counting rate) as a function of angle
then looks like the graph in Fig. 3-6(c).

Let’s review the physics of this experiment. 1If you could, in principle, distin-
guish the alternative final states (even though you do not bother to do so), the total,
final probability is obtained by calculating the probability for each state (not the
amplitude) and then adding them together. If you cannot distinguish the final
states even in principle, then the probability amplitudes must be summed before
taking the absolute square to find the actual probability. The thing you should
notice particularly is that if you were to try to represent the neutron by a wave
alone, you would get the same kind of distribution for the scattering of a down-
spinning ncutron as for an up-spinning neutron. You would have to say that the
“wave” would come from all the different atoms and interfere just as for the up-
spinning one with the same wavelength. But we know that is not the way it works.
So as we stated earlier, we must be careful not to attribute too much reality to the
waves in space. They are useful for certain problems but not for all.

3-4 Identical particles

The next experiment we will describe is one which shows one of the beautiful
consequences of quantum mechanics, It again involves a physical situation in
which a thing can happen in two indistinguishable ways, so that there is an inter-
ference of amplitudes—as is a/ways true in such circumstances. We are going to
discuss the scattering, at relatively low energy, of nuclei on other nuclei. We
start by thinking ot a-particles (which. as you know, are helium nuclei) bombarding,
say, oxygen. l'o make it easier for us 1o analyze the reaction, we will look at it in
the center-of-mass system, in which the oxygen nucleus and the a-particle have
their velocities in opposite directions before the collision and again in exactly
opposite directions after the collision. See Fig. 3-7(a). (The magnitudes of the
velocities are, of course, different, since the masses are different.) We will also
suppose that there is conservation of energy and that the collision energy is low
enough that neither particle is broken up or left in an excited state. The reason that
the two particles deflect each other is, of course, that each particle carries a positive
charge and, classically speaking, there is an electrical repulsion as they go by.
The scattering will happen at different angles with different probabilities, and we
would like to discuss something about the angle dependence of such scatterings.
(It is possible, of course, to calculate this thing classically, and it is one of the most
remarkable accidents of quantum mechanics that the answer to this problem
comes oul the same as it does classically. This is a curious point because it happens
for no other force except the inverse square law—so it is indeed an accident.)

The probability of scattering in different directions can be measured by an
experiment as shown in Fig. 3-7(a). The counter at position 1 could be designed
to detect only e-particles; the counter at position 2 could be designed to detect
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