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PREFACE

For many . years the gap between pure mathematlcs and apphed
mathematics has steadily widened.. On the one hand, the pure math-
ematicians -are considering structures and systems which are becom-
ing ever more abstract and general; on the other hand, the applied
mathematicians are studying concrete and specific pr'oblemS“ It is

well lznnurn of course. that this gap: between the two O‘I‘OHI’\Q 1s reallv

~id Awials iz A e TR ] ATV T Ladaw Ar LVY A AA vaals AL&any

illusory, that the study:of abstract systems can help in the solutlon of
concrete problems, and that the study of specific problems may sug-
gest irteresting generalizations for the pure mathematicians.

This book was written in an attempt to show how the: powerful
methods developed by the ‘abstract studies can be ‘used to systema-
tize the methods and techniques: for-solving problems in applied
mathematics. Such a systematic treatment requires a great deal ‘of
preparation by the student; consequently, more than half of the book
is devoted toa study of :abstract linear spaces and of operators de-
fined on such spaces. However, in this treatment, the emphasis is
not on the abstract theory but on: the techniques which can -be de-
uvcd from this theory to solve spemﬁc problems For example,
\ lhll)lel' 0 preseﬁts LIIB Cleillenl.b Ul LdUI'EIlL DCHW&I’LL S 1[16()1')/ Ul
Distributions’’ in a form which should make it more accessible to the
people who would-use it—the applied mathematicians, the phys1c1sts
and the engmeers :

introductory book on applied mathematics, such as this one,

Ihir i+ voaryr natiirae confain lif+la +hat 16 now Ar Aricinal Fas ) ¢t

\llll Uy 1Ld vl _,V 1A LlLULT Luldildlll 110LLIT Liidal 1o 11CyVvW Ul Ullslllal LAUYY
tver, it is believed that some of the techniques presented here, such

I l,hose for solving integral equations, for finding the Green'’s func-
tion for ordinary or partial differential equations, and for finding the
spectral representation of ordinary differential operators, may be rel-
ntively unfamiliar to the general reader. The development and expo-
wition of these techniques are the main purpose of this book.

As [ar as possible, I have attempted to present the subject so as
to lay stress upon the ideas and not upon the minutiae of the proofs;
ronscquently, many details, illustrations, and extensions of the text
have been put into problems and appendices. It is recommended
that the reader study the problems as well as the text in order to get
n more complete knowledge of the subject.

\'%



vi PREFACE

A few words of explanation for the changes in notation and nomen
clature should be given. The scalar product of two vectors x and y
is denoted by (x, y) instead of the more conventional (x, v). Thin
notation, which is a slight modification of that used by Dirac, hus
the advantage of not overworking the parenthesis, The term Green's
function customarily is used to represent the kernel of the integral
operator which inverts an ordinary or partial differential operator
but only when the domain of the operator consists of functions which
are zero on the boundary. Here the term is used also where the do-
main consists of functions which satisfy any linear homogencous, not
necessarily zero, boundary conditions. This usage, which is common
among physicists, has many advantages to recommend it.

The subject matter of this book has been presented for several
years as a one-year course in the Graduate School of New York Uni-

Vprcl‘hr The nrereqauisites fnr ‘H’\p colurse are a Lrnn\u‘nth Q ol |||1_Q€,“

A WAL A LA pACALY UADILLY VAL UiV Co ARAANT VY AN Py \..ll. aas

algebra and complex integration.

Part of the work for this book was done on a rescarch contract
with the Air Force Cambridge Research Center. 1 wish to thank
them for their support.

I wish to acknowledge with thanks the help and encouragement I
received from colleagues and students at New York University. The
following should be particularly mentioned: Professor R. Courant,
Professor K. O. Friedrichs, Professor M. Kline, Professor W. Magnus,
Professor N. Marcuvitz, and Mr. B. Levy. A special word of thanks
is also due my wife for her help in editing, proof-reading, and index-
ing the manuscript.

BERNARD FRIEDMAN
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sed in applied mathematics to solve
linear problems are generahzatlons of the ideas and techniques used in
algebra to solve simultaneous linear equations. Such generalizations arise
from the study of linear spaces. The theory of linear spaces is an extension
of the theory of three-dimensional vector analysis. Subsequent sections
will show that the theory of linear spaces includes as special cases n-
dimensional Euclidean space, E, (n =1, 2, 3, - - ), infinite-dimensional
Euclidean space, E,, function spaces, etc. As an introduction to the
study of linear spaces, let us consider the following example of three
simultaneous linear equations. |

Find the values of z;, x,, 3 such that
a7y + @197 + ai3r3 = by,
(1.1) A% + agexs + Gg3%3 = by,
az %, + a3gTe + ass¥s = bs.

It is well known that the set of equations (1.1) will, in general, not have
i solution if there exists a non-zero solution of the corresponding set of

homogeneous equations; that is, the set of equations (1.1) when b; = b, =

e ) Quinnnca that . — ' J— Py r. — 2" 1e ane enllition af thece

f’“ v UuPP\JDU LiiaL Wl Wl, Wz W2, w3 3 A0 Vilw OWVi1iWLivIiL Ul L1iIVOow
”"

homogeneous equations and that x; = x], &, = x5, 3 = 23 is another

solution; then
’ n
x, = oxy + P,

—
[\ ]
N’

2 = 0y T P¥g,

x3 = axg + P,
where o and S are arbitrary constants, is also a solution of the homo-
geneous equation.

We may express this fact in an interesting geometrical way. Let «’
denote a vector with components 7, z,, 3 and let z” denote a vector with
components xj, «,, €y ; then the vector whose components are given by
(1.2) is a vector in the plane determined by the vectors 2" and z". We

\ 1



2 PRINCIPLES OF APPLIED MATHEMATIC('S

see that if ' and «” are vectors whose components are the solutions ol
the homogeneous equations corresponding to (1.1), the components ol
any vector in the plane determined by =’ and «” will also be u solution ol
the same homogeneous equations.

This geometric language, which is so intuitive and suggestive, can be
extended to discuss more complica-t'ed linear problems. For cx'tmplc.
consider the Pro blem o
unknowns @y, g, * * *, &,. Again,if the set of numbers Ty, Ty, v, @ 18 ONE
solution of the equatlons and the set 2, 2,4"- -+, &, is a second solution,

then the set

£ oAl lisman 1. ~ Senant
1 bUlVllls i 1111Car JJ.UlllUECllCUU.b ULILMH.IUIIB lll H

!/ 1/
= ax. -+ Bx..
i 1 i ) 12

S RTINS TR, VY /T g
e W

i

R x——= as, + p,
istalso a solution If a vector 118 NOW deﬁned as.a; set of n numbers
Xi, Lo, * -wxh,we have the following geometrical resuli.:

Let x" and: 2" :be vectors whose components are:a solution of the
homogeneous equations; then the components of any vector in the plane
determined by 2’ and 2" will also bea solution: of the same homogeneous
equations. e

The fact that we obtain the same result in dlﬁ'erent cases: 1ndlcates the
usefulness of this geometric approach In this chapter we shall present
this geometric viewpoint in a general form by means of axioms. The
results we thus derive will be apphcable to all situations for which the

axioms hold.

Lmear Vector bpaces

In the precedmg dlscuss1on we defined vectors by means of its com-
ponents ‘This approach is restrictive since it necessnates the 1ntroduct10n
of a definite coordinate system to which the components refer. We know,
however, that in three dimensions, at least, vectors are geometric objects
existing independently of any ‘coordinate system.

We shall now set up a framework which will be sufficiently general to
contain the possible extensions of the concept of vector. Consider a
collection § .of elements which we denote by small Latin latters z, y, z
a, b, - - -. Suppose that an operation, which we shall call addition and
denote by +, is defined on the objects of §, This operation should have
the following properties:

(1) Any two elements z and ¥ in 5 may be added, and the result is an

alament » in ¢ We writea m u o .. »
W iAW A 4 L) YV Ww YY)l AWW W | y TR e



“LINEAR SPACES "' “i+ . - 3

(2)- The operatron is commutative and: assoclatlve ‘that is,
L e ne by =y Y
(w+y)+w=‘x+(y+W) |
(3) & contains a umque element 0 called the null or zero element such
that forxmeg .

SRR

x40 = e

4) For any x 1n 5 there exxsts an element Wthh We denote by — z,
such that

z+(—x) = 0.

These concepts may be understood by consrdermg 5 as the set of vectors
in n-dimensional Euclrdean space E Any vector of thlS space is a set
of »n real numbers;, «::. i :

r = (513 52) A n)
The operation of addition consrdered above corresponds :to the custom-
ary addition of vectors which is defined as follows: 0o

Let ' R
= (7713 7]29 : '9 7771,)9
then
If we define LR T s T i
0= (0, 0, SRS 0) S

and B
’"—x—( 51,_" 52, , n) o e, we 4
it is easy to see that these deﬁnmons satlsfy propertles 1 to 4 specrﬁed
above. N
The set of vectors 1n En, however has some other propertles For
example, if @ s a vector 1n En, then 2x that is, the vector whose compo-

e

‘ rrsAnA oQ ‘f\"'hA no tha o 3
> atv LWIUC ab 14150 a.bv, 11G UUIILPUL[CIILD Ul L

ie vector &, is also in En
Ve shall now express this property in abstract terms.

Let the Greek letters o, § - - - denote the numbers of some ﬁeld 'l'

shall call these numbers scalars, A We assume that to any scalar a. and any

L ¢

vector x h\/ tl'\r-'- Qr'alnr . Thp rlpﬁn

1 3] LAY ALV UwWbity . A ALW “VALAAL \.l J.

{
the following properties:

a(fr) = (ocﬂ)x

(1.3) @+ Pr =+ pe,
ax + y) = ax + ay

t A ficld is a collection of numbers which contains the sum, -difference, product,
nnd quotient of any two numbers in the field. Of course, d1v1510n by zero, is. excluded.
The set of all rational numbers, the set of real numbers, and the set of complex numbers

ara avamnlas Al Anlde
Riv CRGNTIPICE Ui neids,



4 PRINCIPLES OF APPLIED MATHEMATICS

Here « and B are arbitrary scalars, and x and y are arbitrary vectors in 5,

In E, the result of multiplying a vector by a scalar may be deflned as
the vector obtained by multiplying each of its components by the scalar.
This definition will clearly have the properties (1.3).

Any space & which is closed under the operations of addition and of
multiplication by a scalar is called a linear vector space, and its clements
are called vectors. For example, E, (n = 1,2, - - ) is a linear vector spuce.

The concepts of an n-dimensional vector space may be extended to give
the concept of an infinite-dimensional vector space E_ . In E,, a vector
x was a set of n real numbers:

am — (E g P A )
L= \S1 €2 s Snls

in E_, a vector  is a countably infinite set of real numbers:

r = (519 529 ot .)°

The rule for addition in E_ is the expected one, namely, if « is defined as
above and if N
Yy = (7713 noy ° ° ')a
then
x+y = + N, +n )

The product of z by a scalar « is the vector

ar = (aby, aby, * * ).
With these definitions it is clear that E_ is a linear vector space.

Besides these simple examples of vector spaces, there are many others.
For example, all functions f(¢) continuous on the interval 0 << ¢ << 1 form
a linear vector space with the function f(¢) considered as a vector. The
components of the vector would be the values of the function at different
points of the interval. The sum of two vectors f(¢) and g(¢) is the function
h(?), whose values are the sum of the values of f(¢) and g(¢). The result
of multiplying a vector f(¢) by a scalar « is the function whose values are
« times the values of f(¢).

Another example of a vector space which will be important in the study
of differential and integral equations is the space of all real-valued func-
tions g(#) such that g(#)* is Lebesgue integrable over the interval (0, 1).
We shall denote this space by .£,. Addition of vectors and multiplication
by a scalar are defined in this space in the same way as in the space of
continuous functions.

Scalar Product in E, and E |

There is one important concept in vector analysis which has not been
used so far, that is the concept of the scalar product of two vectors. If x

VY sasasan



LINEAR SPACES 5

we shall write <z, ¥), is the sum of the products of corresponding compo-
nents of the two vectors. Using the concept of the scalar product, we
may define the length of « as the positive square root of the scalar product
of « with itself. Also, two vectors are mutually perpendicular or ortho-
gonal if and only if their scalar product is zero.

These ideas may be readily extended to the spaces E, and Ew. In E,

4l cmnnlace smcemdecnd ~AF tlan wramt e , A d aa FANA.,
tne€ scaiar Pl OgaucCt O1I tne€ veClors © auu y J.D aciinea as 101ows
(14) <x > 1771 + 52172 + + Ennn,

whereas in E_ the scalar product is defined by the following infinite series:

S N o Eoaa L E oo 1 ...
&, Yy = &17M1 T S2lg T .

bh

71
(L.
This definition applies only when the infinite series converges.

Just as in three-dimensional space, we may define the length of a vector
in E, or E_ as the positive square root of the scalar product of « with
itself. If we write the length of  as ||, we have in E,

o] = (& + &+ - + &),
whereas in E

(1 A) lel —= (£
\1.Y) hed| \S

+ 52 + .. .)1/2.
Again, this last definition applies only when the infinite series converges.
Note that we shall also use |&; | to mean the absolute value of the scalar &;.

If the infinite series in (1.6) converges, we shall say that the vector x

hnc finite lenoth* otherwice the vector 2 hac infinit e length Hancefarth

SALAU RRARAIVY AViiEmUil g WLHALWE VY LIUWVe LILV VT WWILWIL W LLKU J.LAA.IAAA V oAViigbile ALAWILIVWIUL LVily

we shall restrict E_ to be the space of all vectors with finite length, that
is, E_ contains only those vectors

x = (&1, &g, * + °)
such that the infinite series &2 + £ 4 - - - converges. Of course, now it
is no longer obvious that E_ is a linear vector space since, if both # and
y have finite length, we cannot be sure that ax + Py also has finite length.
The fact that E_ is a linear vector space will be proved in Problem 1.3.

WQ note that Prnb]em 1 2 nravac that if 2» and 2% have finite leno tha
AM [ 9 v [ 9 N i 1.]]. W Ywo tll“b, AL W GkliNG U ALCA ¥V W LlilllVW l\lll&bll’ [ B § W)
dadrmibinae £1 &\ nmwalioo o mrerimimdlers 1 cmaTae caaa Al a4 o A .1 £
UCLHHILVIL (1.0) appucb, COID unIlLly, LIIC dldlial pluuu.bl. 1d UcCllcu 101
any two vectors in E_.
PROBLEMS

1.1. Prove that in E, and E,, (assuming all series converge):

<wv, Yy =@, ay) = &, ¥,
Gy A+ g, YD = &y, YD + {24, YD,

lag = Bul® e (o 4= By, oz = By = a?lx. 2\
"7 | N I a7 I ~aJ/ N\



6 PRINCIPLES OF APPLIED MATHEMATICS

-1.2. Prove that, if x and ¥ have finite length in E, the scalar produet of «
and y has a meamng and we have. - ,

T |<\x,y)|<|x| Yl

Thls result s known as-the. Cauchy-Schwarz 1nequa11ty (Hint. The square of
the length of the vector o, + fy is non-negative for all values of w and fI. Pult

w Wi (Sla 529 i E’na 0 0 )

|2 .
o= IHI Ea I’ ‘_\“"ny .’1/

and use the 1ast result of Problem 1.1 to show that

<@, ?/>| < |2l - [91.)

l 3. Prove that E is a linear vector space. (H’mt Use Problem 1.2 to show
ax -+, By has ﬁpﬁe length if z and ¥ hav finite length.)

‘ QS AradaSs AWaAR VLA wiis

1.4. Consider an n-drmensronal complex space, En, in which a vector ¥ is a
set of n complex numbers and for Wthh the scalar product of x and y is defined
by the formula :

BEp SRS <33,'y> = 51771 + 52’72 + + E’nnn
Here, the bar denotes the complex conjugate -Show: that
(o, y) =E<w Y
<@, )| < || - lyl.

1.5. Consider an oo-dimensional complex space, E,, in which a vector z is
a.set of countable infinite comp'lex numbers and for whlch the scalar product
ofxandyis: . .. | o ¥ .

‘ : <‘”,\y> T 51771 ’l’ 4'2'70,;, SRR :
Show that if « and Y have, ﬁmte length, the. sum deﬁmng (z, u) converges and

K, y>l<lw| gl o

Scalar Product in Abstract Spaces

In an abstract space &, a scalar product is a scalar- valued funct1on of
two vectors & and y, wrltten {a, y), such that e e

(1 7) Ly = '<y, @,
<°<1x1 + 012932, y> = “1<x1, ?/> + °€2<x2, ?/>,
and such that R
(1.8) P < x> >0
if z is not the zero vector.

Equations (1.4) and (1.5) are definitions of the scalar product in E and

E_, respectively. In [p the scalar product of two vectors f and g is
defined to be

e = j f(Dg(0) ar.

By means of the scalar product, the length of a vectlor is defined as
follows:
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Two vectors; x and y, are sard to be orthogonal or: perpendlcular 1f

(x, gy =0.
ThlS deﬁmtron agrees Wlth that used in three dimensions.

‘The scalar product that has been characterized by properties (1.7) and
(1.8) is the appropriate one for a vector space having the field of real
numbers as the scalar multipliers. We shall find it convenient, some-
times, to use complex numbers as scalar multlphers and we shall assume
that the propertles (1 3) of scalar multlphcatlon are still valid. The space
S will be extended to a space § which contains vectors whose components
are complex numbers, and properties (1.7) of the scalar product will be
assumed to hold. However, the extended scalar proauCI will no longer
be real, and the length, may be zero. for a non-zero vector. For example,
in Ez the Vector ‘with, components (1 z) has Zero length

v defing rvn-\ [ nnmn]nv
oYy GCIinit ngin o a COMpPiCx

properties:

(1.9) (oq®y + xgo, ?/> = oc1<x1, Yy + &y, y),
(z, x> >0, if & 0. '

In Problems 1.4 and 1.5, we have defined for the spaces E, and E_ scalar
products which satlsfy (1 9) In ,ﬁ’z, the space of a11 complex-valued func-
tions such that = | :

e ,fo« fOpd<w,
the scalar product of £(¢) and g(#) is definéd by
S8 = | fDg) dr.

This type of scalar product is the one used in quantum mechamcs and the
theory of Hilbert spaces.t e CERTO R
Since in most.of our work the results will be real-numbers, and because

:‘ IC‘ ‘nf‘i ~A11Qe tA 1100 nv ﬂnf f 1‘\ l'\ 4‘1’\ o r] .n PVt 4 mMANAQQN rLr
it 10 VMLV UO LV WOV a UUILLPIU 1uvla L.lUll VV J.Ll\/].l 111 LJJ.U V1AL 1O 1V L;LII‘QUUDBGL y,,
we shall hereafter use the real-type scalar product, unless otherwise

specified. However, we must permit all complex numbers to be used as
scalar multipliers in order that every scalar polynomlal equation have a
root. Consequently, some non-zero vectors will have zero length; there-

fnrn the term “‘length” will be used only for vectors over the real field

VAAW VWi Alk VAA&bAL s UJJ.AJ YwWwWiuUL O Ywi Lilw ‘l\l“l AAWINE .

Wlth this restriction the results obtained with the two types of scalar
product do not differ much. Most of the results obtained with one can

TSee Stone, Llrwar Transformations in Hilbert Space and Their Applications to

Analvels. American thamationl Qaciaty Naw Vark 1029
l"F l,l"l»" A niliwl lb"ll l"l“tll\illl“ll\vwl [ AR A 2 A 'J’ A VWYY A U ll\, P ger -
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be suitably modified to cover the other. In the problems we shall
occasionally discuss some of the necessary modifications.

To summarize: We shall use a linear vector space with the field of
complex numbers as scalar multipliers, but we shall use a real-type scalar
product.

1.6. Prove the results of Problem 1.1 using the abstract definition of the
real-type scalar product. Also, for a vector space over the field of real numbers
prove the Schwarz inequality:

<z, wp| = || - |y].
(Hint. In the third result of Problem 1.1 put a = — <z, y>, B =<, w).)
Work out the corresponding results for a complex-type scalar product.

1.7. Find the value of « which makes | — a«y| a minimum. Show that for

this value of «, the vector * — ay is orthogonal to ¥ and that

|z — ay|® + |oy|® = ||
The vector ay is called the projection of x on y. Draw a diagram in E, to see
the reason for this name. Consider both types of scalar product.

1.8. Prove that

(a) [z + 9[® + |o — y|® = 2J«|® + 2[y[%,

(b) 2 +yl <= + gl

(9] | + y|? = |#|? + |y|*if and only if {x, y> = 0.

For the real-type scalar product the triangle inequality (b) has meaning only if

PN P R A wanl G

PO ;o A 4l P 13
JJ dllll Y alC YOLLULD UVl LUIC 1lal 1ICIU.,
1.9. Consider the linear vector space of real continuous functions with con-

tinuous first derivatives in the closed interval (0, 1). Which of the following
defines a scalar product ?

o = fl U (N At L Nl Ar (f o\ — fl FUUN’(+\ At
\Js &/ JO J WIS \¢) @i 1 JAVISE\V) Vi NS &/ JO J \J5 \1) uti
Convergence and Complete Spaces
A sequence of vectors x;, 5, - - - in § is said to converge to a vector
x in & if, given ¢ > 0, there exists an integer N = N(¢&) such that
(1.10) e —2,| < e

for all n > N. The vector x is called the limit of the sequence, and we
write

r = lim x,,
An infinite sum of vectors
Y-+ Y A0
will be said to converge to a sum x if the partial sums
Ly =Yy Yyt b Uy
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converge to a limit . In a finite-dimensional Euclidean space E,,, (1.10)
implies that each component of the sequence of vectors z, converges in
the ordinary sense to the corresponding component of the limit vector x.

By means of the triangle inequality (Problem 1.8b), it is easily proved
that if x, converges to z, then, given & > 0, there exists an integer N,
such that
(1.11) |z, — | < e
for all integers n and m greater than N;. A sequence of vectors for which
(1.11) holds is said to converge in the Cauchy sense.

It is well known that if a sequence of vectors in E, converges in the
Cauchy sense, it will converge in the sense of (1.10). However, in a
general vector space this result need no longer be true since the limit vector
to which the sequence seems to be converging need not belong to the
space. For example, consider the linear vector space of all functions f(?)
continuous on the closed interval (0, 1). We use the scalar product

gy = |, fOe( at

Now consider the following sequence of continuous functions:

1
)=0 0<r<+ + -
1\ 1 1 1 1 1
———n(t——; + o s SE=S+ -
\ 2) 22 2n 2 2n
=1 : -4 L <t<l1
’ 2 2n
Prse 2= 1.9 . .. Tt 10 ancxr tn ch vy tlant thnca Firsmnti Ao ~nAmIramoa 131 4+l o
1oL N — 1, 4y 7 . 1l 1o caby LU DI1ILW Lilal L1I1IODC 1uuuuuub LOlIlvVCl 55 .lll L11T
Cauchy sense; that is, given € > 0, there exists an integer N; such that

[ o —fardi<e

0

T

for all » and m greater than N;. However, the limit of this sequence is
the function

P PO, T P A 4+l £
wnicn 1S n ) bUllLlllU.UUb allll tllClClUlC aoes not

videred.

The natural way to remove this difficulty is to extend the space of
continuous functions so that it will contain the limit function If this
oxlension is done for all C mmhv sequences, we shall obtain F’ he space
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of functions whose square is:integrable in the sense of Lebesgue.t Sup-
pose that we start with £, and consider sequences that converge in the
Cauchy sense; we may ask whether: we will have to extend the space still
further to‘take care. of limits of such sequences.:: ‘'The answer is no. The
space L5 is complete; that is, whenever a sequence f,(¢) in Ly converges
in the Cauchy sense, there exists a function f(¢) in Ly such that f,(1)
converges to J\t )

We shall henceforth assume that our hnear vector spaces are complete.
If we start with a space that is not complete it may always be extended to
a complete space by a process similar to that which Cantor used to extend
the set of ratmnal numberq to tl1e qet of all real numberq irrational as well
as rational. : -

A complete linear vector SpaCe w1th a complex-type scalar product is

called a Hzlbert space

4

Llnear Mamfolds and- Subspaces

In the introductory section we showed that any vector in the plane
determined by two independent vector solutions of a set of linear homo-
geneous equations.was also:a solution of those equations. This result
will be true in the general linear vector spaces also if we define in such a
space the concepts of independence of vectors and of the plane determined
by two vectors.

A set of vectors zy, %5, * -+, 7, 1S called lznearly dependent if there exist
scalars oy, Olgy " * 4 Oy, NOL l] ZET 0, S‘thh that
(1.12) @y + ¢+ oy, =0,
Note that if the set x, - -+, %, is linearly dependent, any larger set
Ty, Ty Gy 1 T T +pVWill also be linearly dependent since we may
take S R

Oy T U B = = %y =0,
and then we shall have 1
%y Tt Ay Uy Ty p = O
If, whenever (1.12) holds, it follows that
o = 0g =*** =0, =0,

then we say that the set =y, - - -, z,, is linearly independent.

t The reader unfamiliar with the theory of Lebesgue integration may assume that all
integrals are Riemann integrals. For practical purposes there is no difference between
the two theories. The Lebesgue theory is more useful for theoretical purposes because
certain theorems hold for Lebesgue integrals but not for Riemann integrals. For a
fuller discussion, see Titchmarsh, Theory of Functions, Chapter Xl, Clarendon Press,
Oxford, 1939,

I See C. C. MacDuffee, Introduction to Abstract Algebra, John Wiley and Sons,
ew Y lk' 94 r‘hnnlnr \”

A
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Instead of defining the concept of a plane determined by two vectors,
we shall define a more general concept: which includes that of line, plane,
or any higher-dimensional space. Such a con,eept" s that of a:linear
manifold, defined as follows: T S At 1 T AT

If a'collection M of vectors in § is such’that for all scalars « and’ ,3 it

contains the vectors ax 4 By whenever it contains the vectors z and v,
then < is a linear manifold.

The f0110W1ng are examples of linear manifolds:

(@) In E3 any plane through the origin. Note that a 11near manlfold
must always contain the zero vector for 1t contams x — x where x 1s any
vector in the mamfold ' ’

®) InE, any E, n—i> where] =0, 1, 2,

(¢) In ,[?2 the set of functlons such that ’

(d) If bl = bz = b3 = 0 the solutlons of (1 1) form a llnear manlfold
ln E3

1oy :'h)‘

A set of vectors xy, x5, * * *, 2y in M is sa1d to span or to determlne 5){
if every vector y in M can be represented as a linear combination of
@y, T, * 5 Xy -that'is, for any" vector y 1n 5)”( there ex1st sealars
%y, Olgs * %5 Ogs dependlng on y, such that A AT R

(1 13) : /u::ﬂ'r ;.1_' ._l_ﬂ
\ted) . e o sE t.‘f_u ¥ .|. 1.1 _| v‘-/gwlc

The vectors x;y, - xk form a baszs for M if they span M and also are
linearly independent. In this case, the representation (1.13):is unique.
For if the representation were not unique, there would exist another set of
scalars such that | | o
then, by subtractlon - o

) » )

o B G — B

Since the basis vectors are independent, this implies: i~ '« .o i s

—Br=ag — By =" == i =0;

therefore the representation (1.13) must be unique

A lwmane rmanifalAd W cnid ta ha AF dtunsnmoramn I- if tha lhacic rAngicte
'm % llllual Lll.auuu.lu RZA 0 10 oI LU UL \J.l. ull’ﬂc’ﬁﬂbul& AR U I 9§ LN UaDlO U\JLIOIDLD

of k vectors. For example, E, is an n-dimensional space since the vectors
wy s (1,0,0-4,0), -+, 2,=(0,0,--+0, 1) form a basis for it.- If no
linite set of vectors spans the manifold, the dimension of the manifold
is said to be infinite. For example, the linear manifold of ‘continuous
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functions on the interval (0, 1) is infinite-dimensional. One of our most
important tasks will be to determine an appropriate basis for infinite-
dimensional function spaces.

It is an immediate consequence of the definition of dimension that any
k-dimensional manifold contains k-independent vectors (the basis). We
shall now prove:

Lemma. Any set of k + 1 vectors in a k-dimensional linear manifold
is linearly dependent.

The proof is by induction. Suppose that £k = 1.and let x; be a basis for
the manifold. Ify; and y, are any vectors in the manifold, then y; = oy,
Y, = xgx; and we find that agy; — oy, = 0. This proves that y; and y,
are linearly dependent. Now, suppose that every set of k vectors in any
(k — 1)-dimensional manifold is linearly dependent. Let ¥y, - - *, ¥4
be any set of k + 1 vectors in the k-dimensional manifold <}, and let
2y, - -, x; be a basis for <M. By the definition of a basis, each
y; (1 <j<k + 1) can be expressed as a linear combination of the basis

vectors. We may therefore write
yj:aljx1+'..+d'ijk’ (j=192’...9k+1)'

Not all the scalars «, ; are zero for, if they were, all the vectors y; would be
contained in the (k — 1)-dimensional subspace <}, spanned by the basis
vectors g, * * +, Z; and then, by the induction hypothesis, any k and a
fortiori any k + 1 of all the y; vectors would be dependent. Suppose
that ay; # 0. Consider the k vectors ay1y; — 291, (J = 2,3, - - -, k + 1).
They belong to the (k — 1)-dimensional manifold <}(,; and by the induction
hypothesis scalars s, - * -, 3.1, not all zero, exist such that

or Bo(o1ys — daoy1) + *+* + Br1(@nYry1 — %gp1¥1) =0
Baon1ye + ¢ ¢+ ng+1duyk+1 — (Botgz + - - + ﬁk+1°‘1»z- + DY =0

This shows that ¥, ¥s, * * - ¥ 1 are dependent and completes the proof
by induction.
Another way of stating the above lemma is:

In a k-dimensional manifold, the maximum number of linearly independent
vectors is k.

Note that this implies that t
whatever basis is used.

In infinite-dimensional manifolds, the situation is more complicated.
The definitions given previously must be modified as follows:

An infinite set of vectors @y, ay, * * * is said to span M if every vector y
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in J can be expressed either as a linear combination of a finite number

of the vectors x,, Zy, * - - or as the limit of such linear combinations. An
infinite set x;, zy, - - - is said to be linearly independent if

% + deg + -+ =10
implies «; = ag = -+ =0. An infinite set of vectors x;, ®5, - - - is a
knmo far M if everv vectar 2 in M ca kp pvnrncepr’] in a nrnnnp m

AWl Loy 1L VVVLJ Ywwiwsil gy ax Lov U“LA y WwOUOWNE 14 <@ \1 j‘janner

as a linear combination of a possibly infinite number of the vectors
Xy, Ty, * * -

In contrast to the case for finite-dimensional manifolds, an infinite set
of vectors which are linearly independent and which span <M need not
form a basis for J}. For example, let S} be E, and consider the following
set of vectors:

fj=(l,0,0,-'°,0, 1,0,--9), (j=2,3,--9).

Here the second unity is in the jth place. Obviously, the vectors f; are
linearly independent.

In Problem 1.16 we shall prove that the vectors f, f3, - - - span E_. As
an illustration of this statement, the sequence of sums

;l(fz +fs+ - fur D)

converges, as n approaches infinity, to the vector e which has unity as its
first component and has zero for all the other components.

However, the set of vectors f; is not a basis for E_ because it is imposs-
ible to find scalars ay, o3, - - - such that

e=ogfy + agf3 4 -

By comparing corresponding components of both sides of this equation,
we see that, since oy = a3 = - - - = 0, the first components are unequal.
Consequently, the vector e cannot be expressed in terms of the vectors f;,
and therefore they are not a basis for E_.

A linear manifold ) is said to be closed if, whenever a sequence of
vectors x;, g, - - - In S} converges to a limit, the limit of the sequence
belongs to J). A closed linear manifold is called a linear subspace. The
distinction between manifold and subspace is illustrated by the following
cxample

nnnnn 2 dne tlan Anlla G ~f all vant ~ea
Lll .Law COLDIUCL LllC bUll IUI.I oJ Ul a.u CbtUl

ave only a finite
number of components dlfferent from zero. If x; and z, belong to ¥,
that is, if each has only a finite number of components different from zero,
the vector az; -+ Pz, also can have only a finite number of components

different from zero, and so it too belongs to %, thus making % a linear
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manifold. However, ¥ is not:a subspace as:we see if we consider the
following convergent sequence of vectors in 2’7'
“ap="(1, 0,0, 0,0, ++);
zy =(1,%0,0,0,--),
= (1,.@, 30,0, )

anAd lan A ritla 1—\0111 "y no f nfnf__ 1 roamnrnanante tha mimaloacs
aliul DU ‘Ull, WI‘JJ. Wn iay 15 <O - 1LO 1110V UUIILPUII‘UIILD Ll MIWIILUWID
I, 3,3, - -, 1/n, whereas all the rest of its components are zero. This

sequence converges to the following vector x:

x = (19 2, 3’ )’ ‘ /
tms vector nas no Zero components and s0 is not in “:74 S, therefore, is
an example of a linear manifold which is not a subspace. -
The examples of linear manifolds glven prev1ously are also examples
of linear subspaces SR 2

ha granra l 1a anid +a ha tha g Af tha twn crihaenonac ,GM nnAd GM
11LU ayauu /L1 ocu_u Lq UU L1l enlll \J1L 'L‘A:l:\.a Lyu DLI.UDPCI-UUD (!/Ubl L1\l f-/{Jbz
wrltten
if every vector in X can be written.as the sum of a vector in M, and a
‘Inl““‘f\f 11'\ GM Tp A‘Inf‘l ‘YA f 1 GA[ 1‘\‘! “7f1“'+hﬂ 11‘\ f\ﬂ“’ MMIA YXITNYr N0 "l‘la
vuwiuwl 111 (‘J(Jbz. J L\Jl 111 ¢/ U ua.u UV VYYlliliwvil 111 Uil i1iv vva._y ad L1iv

y
sum of a vector in J}(; and of a vector in JMs; then N is called the direct
sum of 5)’(1 and 05)@ and is written as follows:

N =M@ Mo

For example, tne space Ej is the direct sum of any plane tnrougn tne origin
and any line not in the plane but meeting it at the origin, because any
vector in E3 can be written in a unique way as ‘the sum of its prolectlon
on the plane and its projection oh the line. -

1 10 Prove that the set of vectors x orthogonal to a glven vector y forms a
linear subspace. (Hmt Use the Schwarz inequality in Problem 1.6.)

1.11. Prove that £, is the direct sum of the subSpace M spanned by the
functions r.and ¢* and the subspace N of:all functions g (¢) such that '

s ‘ f g(t)t dt = f g(t)r4 dt = 0.
(Hint. If f (t) is any functlon in £,, show that the linear equations

fo f(Or dt = fo (at + BtY)t dt
[y £t ar = [ ot + prowe an

have a unique solution «, f; then show that f(¢) - ar — fr* belongs to X'.)
1.12. Prove that if X is the direct sum of M and M, the zero vector is the

onlv vector which ig in hoth M. and M. Prove the convarsa that if avary
W ERAy Vwwyw i FTVaddwas aw 185 WAIWAL IR ] AW QL I YW Vilw U\JIIVVDHU' ViAW VV J
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vector in & can be written as the sum of a vector in H; and a vector'in ) ;,
and if the zero vector is the only vector common to J ; and {5, then X is the

Aivacnt critm nf M and M w
GITCCHL sulii Ul eity ang i s.

1.13. If M and X are linear subspaces, prove that the intersection of M and
X, that is, the set of all vectors Wthh belong to both N and :N is also a 11near
subspace

1.14. Prove that every one d1mens1ona1 11near mamfold is a subspace
(Hmf Qm—mnqp thm x, 18 a hmm fnr the quhqnage and qnnnnqe tha'r 0Ty m a

VOV i S S d g

Cauchy sequence Then ocn converges to a hmlt ot and mn:c1 converges to a
limit oz;.)

115, If =, + - xk are linearly- 1ndependent prove that the greatest lower
bound of |oc1x1 + + axy| is greater than zero for all values of oy, « -, a
such that o2 + - + a; = 1. Call this greatest lower bound 7, then we have

logiey + -« + Fogag| > p(af 4 - - + a2
for all values of oy, * - *, oz (Hint. The value of |o@;, + - - - + ogayl| is a
continuous function of «;, - * -, o5 Since the sphere «f + - - + o«f =1 is a

closed set, the greatest lower bound is attained. -If the bound were zero, this

would contradict the independence.) .
1.16. Prove the vectors f,, fs, - - * defined on page 13 span E_. (Hint. Let

x = (&, &+ ") Puto,=§ —§& — -+ —§, and let 7, be an integer larger

than n|o,|%; then the vectors y, = &aofs + + o Epfu + _?ﬁ(fnﬂ Ao )
