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PREFACE
;} . :" ..' 'i\

For many, ':Years the ,! gap bChveel1i· 'pure .mathematics and "applied
mathematics 'has steadily widened. On the one hand, thepure;math­
t~maticians ;areconsidering structures'antI systems which are becoIl1:'
ing ever more abstract 'and general; on the other hand, the applied
mathematicians are studying concrete and specific problems'. <Il' is
well known, of course, that this gap,between the' two groups isreaUy
Hlusory, that the study;ofabstract systems can help in the solutidn of
concrete problems, and, that the study of specific problems may :sug-
Rest ir.teresting.generaIizationsAor the pure mathematicians~

This book was written in an attempt to show how the: powerful
methods developed by the·abstract studies can be u'sed :to'systema­
tize the methods and techniques for. solving problems in applied
mathematics. Such a systematic treatment reqtlires a great deal of
preparation bY' the student; consequently, more than half of the book
is devoted toa study oL,abstract linear spaces and'·of operators de..
lined on such spaces. However, in this treatment, :the emphasis is
not on the abstract· theory but on the· techniqlilcs which can·'he de~

dved from this theory to solve' speCific . problems. ';Fof example,
Chapter 3 presents the elements of Laurent: Schwartz's "Theory of
I >istri'outions" in a form which should make it more accessible to the
pt'ople who would.·use,1t-the applied mathematicians, the physicists,
and the engineers.

An introductory book on applied mathematics, such as this one,
('an by its very nature contain little that is new or originaL How­
('ver, It is believed that some of the techniques presented here, such
ItH those for solVIng Integral equations, for finding the Green's func-
I ion for ordinary or partial differential equations, and for finding the
/4)U'ctl'al representation of ordinary differential operators, may be rel­
Illively unfamiliar to the general reader. The development and expo­
f4j t ion of these techniques are the main purpose of this book.

As rar as possible, I have attempted to present the subject so as
to lay stress upon the ideas and not upon the minutiae of the proofs;
l'ollMl'qucntly, many details, illustrations, and extensions of the text
huY(' bepo put into problems and appendices. It is recommended
Ihat the n~adcl" study the problems as 'Nell as the text in order to get
It more complete knowledRe of the subject.

v



VI PREFACE

A few words of explanation for the changes in notllUon Jllltl 1I01Ht'1l

c1ature should be given. The scalar product of two vc:wlrme .%: lUte! .v
is denoted by (x, y) instead of th(.~ more conventional (x, y). 'l'hl.
notation, which is a slight modification of thut ulad-by Dirac, I-HHtl,.t---­
the advantage of not overworkillK the: pmcuthl:si•. The lC;tI'Ill,Q,et,,,'s
function customarily is used to repn'sen t the lcerll"lotth~ in ttllrctl
operator which inverts an ordinary or pUl·titll diftercmtlll.l operat.or
but only when the domain of the operatm' (~Omliltl oUuncdOlli WhLUk",-,,~h,,---;__

are zero on the boundary. Here the term is Lll!led allu wht'I'C' the do..
main consists of functions which satisfy any linenr hom()IIC~lltOLUJ, not
necessarily zero, boundary conditions. This usage, whidl ht (~OI1'I1"UIl

among physicists, has many advantages to recommend it.
The subject matter of this book has been presented for "cvt~ral

years as a one-year course in the Graduate School of New York Uni ..
versity. The prerequisites for the course are a knowledl{c of linear
algebra and complex integration.

Part of the work for this book was done on a research contract
with the Air Force Cambridge Research Center. I wish to thank
them for their support.

I wish to acknowledge with thanks the help and encouragClTIent I
received from colleagues and students at New York University. The
following should be patticulady Inentioned. Professor R. Courant,
Professor K. O. Friedrichs, Professor M. Kline, Professor W. Magnus,
Professor N. Marcuvitz, and Mr. B. Levy. A special word of thanks
is also due my wife for her help in editing, proof-reading, and index­
ing the manuscript.

BERNARD FRIEDMAN
March 1956
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LINEAR SP ACES

Introduction
Many of the ideas and techniques used in applied mathematics to solve

linear problems are generalizations of the ideas and techniques used in
algebra to solve simultaneous linear equations. Such generalizations arise
trom the study of linear spaces. The theory ofhnear spaces IS an extension
of the theory of three-dimensional vector analysis. Subsequent sections
will show that the theory of linear spaces includes as special cases n­
dimensional Euclidean space, En (n = 1, 2, 3, .. '), infinite-dimensional
Euclidean space, Em' function spaces, etc. As an introduction to the
study of linear spaces, let us consider the following exam:p!e of three
simultaneous linear equations.

Find the values of Xh X2, Xs such that

allXl + a12x 2 + algX g bh

(1.1) a2lx I + a22x 2 + a2Sx S = b2,

aSIXl + aS2x 2 + aSSx3 = bs •

It is well known that the set of equations (1.1) will, in general, not have
u solution if there exists a non-zero solution of the corresponding set of
homogeneous equations; that is, the set of equations (1.1) when hI = b2 =

ha ~:=.: O. Suppose that Xl = x~, X2 = x~, X3 = x~ is one solution of these
I . dh " " II' hl(lmogeneous equatIOns an t at Xl = Xl' X2 = X 2' Xs = Xs IS anot er
Molution; then

(1.2)

'Nhere ot and fJ are arbitrary constants, is also a solution of the homo-
gcneous equation.

We may express this fact in an interesting geometrical way. Let x'
dtmote a vector with components x~, x~, x; and let x" denote a vector with

" " " h th h . bcomponents xl' X2' Xs ; t en e vector W ose components are gIven y
(1.2) is a vector in the plane determined by the vectors x' and x". We

, 1



2 PRINCIPLES OF APPLIED MATHEMATl( IS

see that if x' and x" are vectors whose components UfO the NolulitHH' 01
the homogeneous equations corresponding to (1.1), the components 01
any vector in the plane determined by x' and x" will also be UMolulion 01
the same homogeneous equations.

Tbis geometric language, which i% so intuitive and suggcstivd, Cll" he:
extended to discuss more complicated linear problems. For cx\\tnplC3,
consider the problem of solving n linear homogeneous equations in 11

unknowns Xh X2, •• " ';¥'n.~,Ag~in;:,i(the~t;.of;numpe1,"s x~, x~, .. " x~ it; one
'.' " .,: " ".' ," if ',' ;' 'II

then the set

is also ,a s,olution;. If avector')x ,is, now defined, as ,aset of n numbers
xi, X2', "'~xn,we ·have the Jollowing ,geometricalresult,,;,

Let x''., and,. x", ;be.vectors whose components area s01ution of the
homogeneous equations ; then the comp:onents of any. ve,ctor in the plane
determined py x' and'x" will also be,a solution of the,s~me1lomogeneous
equations.

The fa ct that we obtain the same result in differentc,a~s: indipates the
usefulness of this geometric approach. In this c~pter we shall present
this geometric viewpoint: in a generalfofm by means of axioms. The
results we thus derive will be applicable to al1sltuations for which the
axioms hold.

:('. : ': ,:'i .,'"

-,;:; ',';',,'."' ..'.-. "'.. '." ,":, '," -', ." ",.'·.·.'.0 .. ,'· . '.. :.. \

ofa definite cOOldinate system to which the components refer .. We.kJ,low,

Linea:rV'ector Spates ' '. ' / '

In the preceding dis~ussion we defined vectors bYD1~ansof its. com..
ponent,s. '..•Thjsappf~achis f@strictive siny~ it neges~itaie~ the'introduction

contain the possible extensions of the concept of vector. Consider a
collect;iQ~8 ·of el.emcnts 'yvhj~h ,Wf; denote by small Latin tatters x, y, z,
a, b, .. '. Suppose that an operation, which we shall call addition and
denote by, +, is defined on the objects of $. This opcff.\lion should have
the following properties:

(1) Any two elements ~ and ~J in cS mll)' bd adcJed. and the result is an
element z in $. We write x + 'II ~,,1 Z.
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(:4) ''fhe,op.erati0nis cOl)]:ffintativeand,associative;' that is,
,', ," ! ,:' ,," ", x"+y "'ll-fLxr'; "" i',,' ' , '.

i'(X+' y) + wi;x.+(y;-fw)." .' ,',' '
(3) $, contains a unique 61em6~t 9;. c~l1ed'tH~\'ntlll'!()r:~6~(); 'ei6111~11~i, ,SllCh

(4) Fdi any x in '$, there exists an. ,element, whic,h we dfmo'te by ~ x,
• l .' • ~ . " \ : !, , ,

such that '

These concepts may be un4,erstood by con~ideri~g;$ 'as the 'set ~f vectors
in n-dimensional Euclidean space En.' Any vtctor x of this space is a set
of n real numbers~: ,i};, :i:,,' , ,,!;.,,!

, ,
", "( 'I

• .. I

Y = enl' n2, :. ·,'nn);

If we define

then

The operat,ion of ,adQJ~ion>,cqn~i4ef;t?st,ap,pv,ecor~esppnQ~.;Jp .t~.e;,,9)Osto~­

ary additi~nofvect'~rs'whi'ch is defined as foll~ws:: .i

Let

O = (0 0 .•:a, , 0,).", , ."" "

and

(1.3) {(X +fJ)x' = ~x:-+{Jx, ' , ," ;'j'; ,',', ';,

(X(x + y) = (Xx + (Xy

1 . x = x.

't A held is a collection of numbers which contams ~l;1e sum" '(JifferQnce",prodiuct,
Rnd quotient of any two numbers in the field. Of CQurse, division b:y,zero" is; ~9Iud~ct.
'f'h~ Net of nil rt\tionul numbel s, the set of real numbers, a'ria the set or-complex number s
IU'''' cx.umples of fields. ' , ~, :"', , ;,J 'c
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Here IX and fJ are arbitrary scalars, and x and '!J are arbiLfnfY veelm'M ill I~,

In En the result of multiplying a vector by a scalar may be denned I1S

the vector obtained by multiplying each of its components by the NoallL1",
This definition will clearly have the properties (1.3).

Any space cS which is closed under the operations of addition and or
multiplication by a scalar is called a linear vector space, and its elements
are called vectors. For example, En (n = 1,2, ...) is a linear vector Spl\Ce.

The concepts of an n·dimensional vector space may be extended to sive
the concept of an infinite·dimensionaI vector space Eoo ' In En. a vector
x was a set of n real numbers:

x = (~h ~2, •• " ~n);

in Eoo ' a vector x is a countably infinite set of real numbers:

The rule for addition in Eoo is the expected one, namely, if x is defined as
above and if

then

The product of x by a scalar IX is the vector

!XX = (IX~h IX~2' •••).

With these definitions it is clear that Eoo is a linear vector space.
Besides these simple examples of vector spaces, there are many others.

For example, all functions f(t) continuous on the interval 0 < t < 1 form
a linear vector space with the function f(t) considered as a vector. The
components of the vector would be the values of the function at different
points of the interval. The sum of two vectors j (1) and g(1) is the function
h(t), whose values are the sum of the values of f(t) and get). The result
of multiplying a vector f(t) by a scalar IX is the function whose values are
ex times the valu€(s of/(t).

Another example of a vector space which will be important in the study
of differential and integral equations is the space of all real·valued func­
tions get) such that g(t)2 is Lebesgue integrable over the interval (0, 1).
We shall denote this space by .22' Addition of vectors and multiplication
by a scalar are defined in this space in the same way as in the space of
continuous functions.

Scalar Product in En and Eoo
There is one important concept in vector analysis which has not been

used so far, that is the concept of the scalar product of two vectors. If x
and yare vectors in three..dimensional spaco, their scnlar product, which
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we shall write <x, Y), is the sum of the products of corresponding compo-
nents of the two vectors. Using the concept of the scalar product, we
may define the length of x as the positive square root of the scalar product
of x with itself. Also, two vectors are mutually perpehdicular or ortho-
gonal if and only if their scalar product is zero.

These ideas may be readily extended to the spaces En and Er:rJ. In En
the scalar product of the vectors x and y is defined as follows:

(1.4) <x, y) - ~11h + ~2TJ2 + ... + ~nTJn,

whereas in Er:rJ the scalar product is defined by the following infinite series:

(1.5) (x, y) = ~l'YJl + ~2'YJ2 + ....
This definition applies only when the infinite series converges.

Just as in three-dimensional space, we may define the length of a vector
in En or Er:rJ as the positive square root of the scalar product of x with
itself. If we write the length of xas lxi, we have in En

Ixl = (~i + ~~ + ... + ~~)1/2,

whereas in E 00

(1.6) Ixl = (~i + ~~ + ...)1/2.

Again, this last definition applies only when the infinite series converges.
Note that we shall also use I~ to mean the absolute value of the scalar ~l.

If the infinite series in (1.6) converges, we shall say that the vector x

has finite length; otherwise, the vector x has infinite length. Henceforth,
we shall restrict Eoo to be the space of all vectors with finite length, that
is, Eoo contains only those vectors

such that the infinite series ~i + ~~ + ... converges. Of course, now it
is no longer obvious that Eoo is a linear vector space since, if both x and
1/ have finite length, we cannot be sure that oc.x + {Jy also has finite length.

00 ,

We note that Problem 1.2 proves that, if x and y have finite length, the
definition (1.5) applies; consequently, the scalar product is defined for
any two vectors in Eoo •

PROBLEMS

1.1. Prove that in En and Eoo (assuming all series converge):

<lXX, V) - <x, rxy) - rx<x, V),

IlXW + (JoVlli = <lXr.v + fly, lXX + fJy) = rx2<x, x) + 2rt.fJ<x, Y) + fJ2<y, V).
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,1.2. Prove:,thatj,<if $ and y,haMeHnite lengthin,E~, the scalaI' 1~I'od~lliolt uf If'

the length of the vector IXxn+,§Y~s nqn"p,ega~iye (or;a~l values of ex and fl. l'ui

" ,,; '1X,,*IYI2, .<(J :--:(xn, Y>'I. ", I

and use the last result of Problem 1.1 to "show that

_____-----c- -c-y--_~I<xmy)~~.) _
'1.3.' Pt6~b;tiut{E~i~'ailirteiar:~edbrspace,"'·(fnjzt.UseProblem 1.2 to show

that IXX +,fJY has finite length if x,alld Y h~ye finite,Jength.)
".. '.

1.4. Consider an n-dimeJlsional complexsp~ce, E~h iJl "which a vector x is a
set of n complex IrurnberS'andfoT' Which tHe' scabuproduct' orx~nd Y IS defined
oy 'the' ferh1Ula;,:,' i ',:' '., ,:; ':: " , '" , ' '" .,,' ' ',., ',' ,

Here, the bar denotes'the complex cOllju'gate.':' ShQw.'thait

<x, y). <'!:h x),
<(tx, y) - ~<x, y>,

I<x,y>~.
,'. I, f .,,;. _

1.5. Consider an oo-dimensional complex space, Eoo , in which a vector x is
a ,se,l' of' countable infinite cQInplex"numbers'and for which the: scalar product
Of'.XI anQ.yjs ' , ,": , ',,' I

Show (hat ~,~ x an4;·Y h~v~, finite J~ngtl;l" th~·, sqflil ,d.~fipi.Ilg:(~, Y)~<?:riverges and

.' . '," ,·J<x,,;y~L<lwlq,lyl;·": ';,

Scalar Product in Abstract Spaces .
! '. ~. ".' '~ .;- ~ :' , .'

In an abstract space $, a 1calatijroduct is a scalar-valued function of
fwo'vectors:arand y, wtitten (x, y), sud-Ii thar"';, ' ,'j

(11}7) ", ':"\X~}Yl'WJ';~y,:~>, ",'",

anJsti2~: t~~t g~~i:+ ,,,~i~/¥>:'~~{~~,y>; t'~~~x~ d>., ·

Boo, respectively. In £2 the scalar product of two vectors f and g is

By means of the scalar product, the length of a vector is defined as
follows:
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Two vector8';xandc y,are said lobe orthogonal or:' perpendicularjf .

ThiS'definition agrees With t~atusedin'three dhl1ensions.
Tlie's~alaipr()dl1ct 'that has been characterized:bypropetties (1.7)a;nd

(1.8) is the appropriate one for a vector space having the field of teal
numbers as the scalar multipli~rs~. ,>~~shall find it convenient, some­
times, to use complex numbers as 'scalar' 'multiplier5, and we shall assume
that th¢pr()p~tti~s(I,.~l'o(sc~l~f~*lt~plication~restill'v~lid." The .spac~

assumed to hold. However,. the extended" scalarpro<;luct will no longer
be real, aJ)d,Jp~ lr~gth"m~y l?~, :z~foJora Q.on~zen~ xecio(~ I 'Fqr' ~x:amPle,
in E 2 thc ycc;torwith;pOP1Ponents (l,i)has:l:cro length~ .' ..... . .

by defining in $ a complex-type. ~c~lar product which has the following
propertie~,; '" ,

,~x,y) -,::<y,. x>~ ,r .' " " ro'. ,

tions sttch'tHat' ': " ),' ,,',r "0' ; " '. 0 i '

,Jol If(!)I2.,4t!~;;~, "

the scalarprddud' 'of f(t) and g{i) is dbf1ri~d by
, , <f, g) = J61

!(t)g(t) 4t.
This type of scalar product is the one used in quantum mechanics and the

". " , .. '..theory of Hilbert spaces.t ·.·f' '.:, 'C': """; ;. ,,,,,,,,'

Since in most. of.our work the results will be realRumbers,,,and,pecause

Ncalar multipliers in order that every scalar polynOmial equation' h'ave'a;

it is tedious tOru>e, a complex notation wl1ieh in thecend is :not,necess-ary,
we shall hereafter use the real-type scalar product, unless oth~J,"wi~e

Npecified. However, we must permit all complex num1)ers to be used as

root. Consequently, some non-zero vectors will have zero length; ther~:'

fore, the term "length" will be used only for vectors over the real field.
With this restriction the results obtained with 'the twotypes';ofscai~r
product do not differ much. Most of the results obtained with one can

t See Stone, Lineor Transformations in Hilbert Space and Their APplications to
Alltll,y,\'ls, Amel'ican ML\themutical Society, New York, 1932.
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be suitably modified to cover the other. In the problems we Khall
occasionally discuss some of the necessary modifications.

To summarize: We shall use a linear vector space with the field of
complex numbers as scalar multipliers, but we shall use a real-type scalar
product.

PROBLEMS

1.6. Prove the results of Problem 1.1 using the abstract definition of the
real-type scalar product. Also, for a vector space over the fieLd of real numbers
prove the Schwarz mequallty:

I<x, y)1 < Ixl . Iyl·
(Hint. In the third result of Problem 1.1 put ex = - <x, y), (3 = (x, x).)
Work out the corresponding results for a complex-type scalar product.

1.7. Find the value of IX which makes Ix exyl a minimum. Show that for
this value of ex, the vector x rxy is orthogonal to y and that

Ix - exyl2 + lexyl2 = Ix1 2.
The vector exy is called the projection of x on y. Draw a diagram in E 2 to see
the reason for this name. Consider both types of scalar product.

1.8. Prove that

(a) Ix + yl2 + Ix - yl2 = 21xl2 + 21y12,
(b) Ix + yl < Ixl + Iyl,
(c) Ix +y~12 if and only if <x, Y) - O.
For the real-type scalar product the triangle inequality (b) has meaning only if
x and yare vectors over the real field.

1.9. Consider the linear vector space of real continuous functions with con­
tinuous first derivatives in the closed interval (0, 1). Which of the following
defines a scalar product?

<f, g) = fol
f'(t)g'(t) dt + f(O)g(O) or <f, g) = fol

f'(t)g'(t) dt.

Convergence and Complete Spaces

A sequence of vectors Xl, X2, . . . in S is said to converge to a vector
x in $ if, given e > 0, there exists an integer N = N(e) such that

(1.10) Ix - xnl < e

for all n > lvr
• The vector x is called the limit of the sequence, and we

write

An infinite sum of vectors
--------------'l.yh-t-+ Y2 -1~"~'-L-'~.------------

WIll be said to converge to a sum x if the partial sums

.x,. = Yl + y,/; +. I • + Yn
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converge to a limit x. In a finite dimensional Euclidean space E rm (1.10)
implies that each component of the sequence of vectors xn converges in
the ordinary sense to the corresponding component of the limit vector x.

By means of the triangle inequality (Problem 1.8b), it is easily proved
that if Xn converges to x, then, given 8 >0, there exists an integer N 1

such that

(1.11)

for all integers Il and 111 greater than ]'ll' A sequence of vectors for which
(1.11)'holds is said to converge in the Cauchy sense.

It is wen known that if a sequence of vectors in En converges in the
Cauchy sense, it will converge in the sense of (1.10). However, in a
general vector space this result need no longer be true since the limit vector
to which the sequence seems to be converging need not belong to the
space. For example, consider the linear vector space of all functions let)
continuous on the closed interval (0, 1). We use the scalar product

_________<----=--h_,g->-------,f: f(t)g(t) dt.

Now consider the following sequence of continuous functions:

in (t) = 0,
1 1

O<t<- +­- -2 2n

-1- ,
2 2n

for n = 1, 2, .. '. It is easy to show that these functions converge in the
Cauchy sense; that is, given 8 > 0, there exists an integer N 1 such that

------------fo-1-t-C+.(n:=--~J+:+nc:-l~)~2-£;jd'+t-.oE<~8;--------------

for all nand m greater than N 1. However, the limit of this sequence is
the function

lCt) = 0, 0 < x < t

- 1, I <X < 1,

which is not continuous and therefore does not belong to the space con­
Hidered.

The natural way to remove this difficulty is to extend the space of
continuous functions so that it will contain the limit function. If this
extension is done for all Cauchy sequences, we shall obtain £2, the space
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of functions whose square'isdntegrable in tfi:e :sense of Lebesgu.c.t Sup­
pose that we start with cE2 ;and consider sequences ,that converge in. tho
Cauchy, sense; we may ask whether we will have.. 'to extend the space still
further to:;take care.,oflimits·of such sequences..:'Fhe answer is 'no. The
space;~2js complete ;:tbat js~ whenever a:sequenceJ;it) in J:1w converges
in the Cauchy sense, there exists a function /(1) in £2 such that .f~(t)

converges to I(t).
We shall henceforth assume that our linear vector spaces are complete.

Ifwesfartwtfh a space thatis hotcomplt:~te,itmay'always be extended to
a complete space by a pr&cess sirliilart6 that which Cantor used to extend
the set of'ratldnal nu~betsto the set'ofaUreal llu111bers; irrational as we))
~srati6ii'aLt.' " ,

A coi#plete linear vectOr spitce' whha:'corrtplex~type scalar prod'uct is
called a Htlbert space. ";' , '" .. ...',' ,

" ',f - • "

Linear Manifolds and·Subspaces " :: ,

In the introductory se~tionwe showed that any vector in the plane
determined by two independent' vector solutions of a set of linear homo-
geneous equations" was also a .solution ofthose equations. This result
will be true in the general linear vector spaces also if we define in such a
space the concepts of independence of vectors and of the plane determined
by two vectors.

A set of vectors Xh X2, • .,., Xm is called; linearly dependent if there exist
scalars (Xh <X2,:' •• ,',<Xm, not all zero, sp.ch tl!at
(1.12) (XIXI., + ... + (XmXm = O.

Note that if the'set Xh • ',',' 'Xm is linearly dependent, any larger set
Xh ••• xm, xm+ h •• " xm+pwill also be linearly dependent since we may
take

(Xm+ 1 = <Xm~r"2 i•• ,~'. = <X1h+ pi <::-0, "

and then we shall have
o.

If,\.'Vhenever (1.12)holds, it follows that
(Xl = (X2 = ... = (Xm = 0,

,

then we say that the set Xh •••, X m is linearly independent.

t The reader unfamiliar with the theory of Lebesgue integration may assume that all
integrals are Riemann integrals. For practical purposes there is no difference between
the two theories. The Lebesgue theory is mote useful for theoretical purposes because
certain theorems hold for Lebesgue integrals but not for Riemann integrals. For a
fuller discussion, see Titchmarsh t Theory of F'rlflcl/OltS, Chapter Xl, Clarendon Press,
Oxford, 1939.

----'t See C. C. MocDuffee, "'''talkie/it". to' Abstl'Ud Afttehl'Cl, John V/iley and Sons,
New York, 1940, Chapter VI. '



",LINEAR'SPACES 11

Instead :of tlefining, the;ceneept ora plane determined by two \-rectors ~

we shall clefine a,more ,gene~~ concept wbidl includesiLhat of line,Jplane,
or any higher-dimensional space. Such a concept"is, that of a 'litzear
manifold, defined, as follows,:.: , . ',.: [) I' . i

contains the vectors <Xx + fJy whenever it contains the veddrs'xand 'y;
then ;Ji[ is a linear manifold.

The folIo\Vihg are'g~~}In;'ple:s bflineat 'hlartifolds :: . '. . ..,i;;,' '..' .. "
..."! '.1 f,';,, ~ ,

(a) In E3 ~nypla.ne through the origin., Note t1)at a Jine~r manifold

, ., ·Jolf(")~i~.~;tit ,~: ',''''''
:.' ,::. ",,:, ( ;;>! ,: : ,i,',i ..,: ;' ) .:'. '; 1. _::::~. ':, ,

(d) Ifb1 .=b2 ,b3 , 0, t~e soltitipns,of(1. 1) fqrp1;a Jin~ar manifolg
'1n·E3• .. '·i'.···:.,· ,. '.'.... ;', " ,'.: ." "i' , ':':'/ "~"~"~"~;

A set of, vectors Xh X2, • • " :.xk in (JI[ is said tospqn or ~o d~termine :Jr[
if every vector y in 3r[ can De represented as a line'ar cdmbination of
Xh X2," ·,xk,~that'iS, for-any' vector yin~, thete"exist- :scalar'~
CXh CX2, •• ~, arc, dependingony; .sucl:1Ahat·: .:.', .,'" ". " .

~, ; .': J', ::; : ,.;
. '-., ";,'J;: ,-',

. y ." el:X '+'/ .. :....+. ~.;' ,,'.;
,;. , 1 1..... . W"k:~

." ; ; " ,;-'" '- - .-. ")"; " ." '.

The vectors Xi, ...; xkform a bqsis for;;Ji[;ifthey,.spanj}[ and also are
linearly independent. ;In' this 'case, the <representation eL13) ,is u.nique.

(1.13)

For if the rep:resentatiQn werena! unique, .', there would existanother set: of
scalars such that

y =' PIXI + ... +fJ/fk;
L '.. ,

then, by subtraction,

(), ;('~~ ~Pl)Xl' '+ .:. + (elk - P~)Xk'

Since the basis vectors are independent~thisimplies ;

,.: ~

therefore the representation (1.13) must be unique.
A, linear manifold.3r[ is said to be of dimensionk!if the basis' consists

of Ie vectors. For example, En is an n-dimensional space sincethe:vectors
iCl";:~ (I~ O~ ... ~ 0), .. " Xn = (0, 0, .. " 0, 1) form a basls'Jor:it> Ifmo
Unite set of vector.s spans the manifold, the dimension of ,the, manifold
iN lIJaid to be infil'lite. For example, the linear manifold of continuous
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functions on the interval (0, 1) is infinite-dimensional. One of ourmoHt
important tasks will be to detennine an appropriate basis For infinite-
dimensional function spaces.

It is an immediate consequence of the definition of dimension that any
k-dimensional manifold contains k-independent vectors (the basis). We
shall now prove:

Lemma. Any set of k + 1 vectors in a k-dimensional linear manifold
is linearly dependent.

The proof is by induction. Suppose that k - 1. and let Xl be a basis for

the manifold. IfYI and Y2 are any vectors in the manifold, then Yl = OCIXh

Y2 = iX2XI and we find that iX2YI - iXIY2 = O. This proves that YI and Y2

are linearly dependent. Now, suppose that every set of k vectors in any
(k I)-dimensional manifold is linearly dependent. Let Yh •• " Y1c-I-l

be any set of k + 1 vectors in the k-dimensional manifold 3Y[, and let
XI, • ", Xk be a basis for :M. By the definition of a basis, each
Yj (1 <j < k + 1) can be expressed as a linear combination of the basis
vectors. We may therefore write

Yj = OClj Xl + ... + (J.kjXk, (j = 1, 2, ..., k + 1).

Not all the scalars (J.lj are zero for, if they were, all the vectors Yj would be
contained in the (k I)-dimensional subspace e.?r[k spanned by the basis
vectors X2, •• " Xk; and then, by the induction hypothesis, any k and a
fortiori any k + 1 of all the Yj vectors would be dependent. Suppose
that (J.n i= O. Consider the k vectors (J.nYj - (J.ljYh (j = 2, 3, .. " k + 1).
They belong to the (k - I)-dimensional manifold :Jt[k; and by the induction
hypothesis scalars fJ2' .. " fJk + 1, not all zero, exist such that

This shows that Yh '!12, • • • Yk + 1 are dependent and completes the proof
by induction.

Another way of stating the above lemma is:

In a k-dimensional manifold, the maximum number a/linearly independent
vectors is k.

Note that this implies that the dimension of a manifold is the same
whatever basis is used.

In infinite-dimensional manifolds, the situation is more complicated.
The definitions given previously must be modified as follows:

An infinite set of vectors Xl. X~h • • • is said to span c'Jrl if every vector y
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in 3r[ can be expressed either as a linear combination of a finite number
of the vectors Xl", X2, ••• or as the liIIlit of such linear cOIIlbinations. An
infinite set XI, X2, ••• is said to be linearly independent if

OC]:XI \ OC2X2 I ... 0

implies 'Xl - <X2 - ••• - O. An infinite set of vectors Xh X2, ••• 1~ a

basis for 3r[ if every vector y in 3r[ can be expressed in a unique manner
as a linear combination of a possibly infinite number of the vectors

In contrast to the case for finite-dimensional manifolds, an infinite set
of vectors which are linearly independent and which span 3r[ need not
form a basis for eGfn. For example, let :M be Eoo and consider the following
set of vectors:

Jj = (1, 0, 0, ..., 0, 1, 0, ...), (j = 2, 3, ...).

Here the second unity is in the jth place. Obviously, the vectors 1j are
linearly independent.

In Problem 1.16 we shall prove that the vectors 12, 13' ... span Eoo • As
an illustration of this statement, the sequence of sums

1
-(f2 +13 + ... +In+l)
n

converges, as n approaches infinity, to the vector e which has unity as its
first component and has zero for all the other components.

However, the set of vectors Ij is not a basis for Eoo because it is imposs­
ible to find scalars CX2, CX3, ••• such that

By comparing corresponding components of both sides of this equation,
we see that, since CX2 = CX3 = . . . = 0, the first components are unequal.
Consequently, the vector e cannot be expressed in terms of the vectors Ij,
and therefore they are not a basis for Eoo •

A linear manifold 3r[ is said to be closed if, whenever a sequence of
vectors XI, X2, • • • in 3r[ converges to a limit, the limit of the sequence
belongs to 3r[. A closed linear manifold is called a linear subspace. The
distinction between manifold and subspace is illustrated by the following
example.

In Eoo consider the collection cg; of all vectors that have only a finite
number of components different from zero. If Xl and X2 belong to cg,
l hut is, If each has only a finIte number of components dIfferent from zero,
the vector !Xx] :I- PX'l. also can have only a finite number of components
different from zero, and so it too belongs to ~, thus making cg; a linear
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manifold. However,'fJ is net a subspace as, we ,see if Wit consider the
foilowingconvergentsequence of vectors in fJ:

xi" ' '(1, 0,0, O~O;· ~~)/

X2 (1, t, 0, 0, 0, ...),

~3 " (I,t, i, 0, 0, . " ,.),

and ,'so ,OD, (,with "Xn having as 'its first n components the numbers
1; !,l, .~ .,'l/n,;whereas all, the test of its components are zero. This
sequence converges to the follOWIng vector x:

this vector !las ,I10 zero compop.ent~,and s() 'is not' in '~. Cf}, therefore, is
an example of a' 'linear manifotd which is hoi a subspa~e. ' '

The examples of linear manifolds given previously are also examples
of linear subspaces. "" ,; ;

if every vector in X can be written as ;t'he sUffiQf a vector in M1 and a
vector in :Ai2. If every vector in :N can be written in only one way as the
sum of a vector in :Ail and of a vector in :Ai2~ then :N is called the direct
sum of :Ail and M 2 and is written as follows:

• :." ;/ I ',"

~()l'e~al1lple,Jh~~paceE3is pwdirectsum ofanyplaneJ:p'~ougl;lth~,origin

and any line not in the plane but tp.eetiIlg it at.Jh~ .orlg~:n", because ~ny

vector in E 3 can be wri~ten in a unique way as the 'sum of its projectIon
on the plane and its projection oh the line."

'l.tO. prove that tbeset,of vectqrs x ortl1ogon,al to a ,~ivell vector y fo~ms a
linear subspace.' (limt~ Use the'Schwarz' inequality in Problem 1.6.) .;

Ifj(t) Is.any functIOn in 1 2" show ~hat the lme,ar equations

11 11
----------)0 IEt)t dt fo (oct + [3t 4)t dt

J0
1

f(I)(4 dt = Jo1
(ext + /1t')1 4 df

have a unique solution ot, fJ; then show that let) at - fJ/4 belongs to !J( .)
1.11. Prove that If.W is the direct sum of .!lit I and Bfl 1h the zero vector is the

only vector which is in both J1t I and $¥t II' Prove 'the converse, that if every.
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vector in fN' canse vmtten as the'sum af'R' vector in .JtE1 •and a' "lector' inJ)t~,

direct sum of :All and :Jtl 2.'·· . . .

1.13. If:J1l and :x are linear subspaces, prove that the intersection of :J1l and
ZN, that is, the set of all vec'tors which belong to both .:M and 9(, is also a linear
subspace. , .. ;.

1.15. If Xl;" ',Xk are linearly independent, prove;,thattne.greatest lower
boundor IrlliXl + ;;',-,±. rl~kl is greater than zero for all valuesofrlh .. " rlk
such that rl~ + ... + rx.: = 1. Call this greatest lower bound y, then wehave

IrllXI + ... + rlkXkl > y( tii + ... + rl~)1/2

for all values of rlh .. " rlk. (Hint. The value of Irl]X] + + rl~kl is a
continuous function of rlb ..., rlk. '" Since the sphererl~ + + rl~. '.' 1 is a

than ntnnl 2
; ~en~l~e,vectPts Yn ~2f2 +.~;.,' ~nfri,+(Jn(fn+1 ,+ 'F ,,+,;tp). '.' . "'T

n
where p = n + Tm converge tox.);

Xl and X2 span $, or there is a vector Xa which is linear1yind~peIlc.teI}~ pf
both Xl and X2' Add the vector Xa to the ,set of basi~ 'vectors. "If,we
continue this proceSs, either if \Vj]]'el1dafteT:a fltJiteHumhero'C's'iepsor it

will form a basis for $~ If the' process continues inHeflriitely ~ 'tlte;-vect'ots
itl" X2, ••• will form a basis for $.t

~

In the case where the vectors XI, •• " Xn form a basis for $, we shall
..how that the elements of cS may be represented as sets of n numbers·and
llm't consequently $ is the same as En. To prove this, consider any two
~Iements x and y in $. From the definition of a ,basis, 'we may'write

X = OCIXI + ... + OCnXm

l' We ussume that $ possesses a countable basis.
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Now, from (1.3) and the properties of addition, we see tlutl

and

This shows that if x is represented by the set of 1l numbers (OCIt • , " Clr,)

and Y by the set of n numbers (fh, .. " fJn), then ($ is the same as E,,,, us
regards addition of vectors and multiplication of a vector by a scalar.

The two spaces may differ, however, in the definition of scalar product.
In En, the scalar product of the vector (cx}, •• " cxn) and the vector
(fh, .. " (1n) is fXl{11 + ... -+ fXnfJn' In S the scalar product of the vectors
x and y is

n n

ZZCXj,Bk<Xj, xk>·
1 1

This will be the same as the usual scalar product defined in En if, and only
if,
(1.14) <Xj, xk ) = 0, j -:/= k

1, j k, (j, k 1, 2, .. " 12);

that is, if, and only if, the vectors XI, •• " xn are mutually orthogonal and
their lengths are unity.

A set of vectors is said to be orthonormal, or O.N., if they satisfy (1.14).
From the above discussion we see that if cS possesses an e.N. basis, the
representation of elements in <3 by sets of n numbers will give correct
results for scalar products also; consequently, $ may be completely
identified with En.

If cS has an infinite O.N. basis, it may similarly be identified with Eoc;.
The next section will discuss a method of obtaining an D.N. basis for $.

Orthogonalization
By a method known as the Schmidt orthogonalization process a set of

mutually orthogonal vectors may be constructed from any set of linearly
independent vectors Xh X2, •• '. The construction is as follows:

Put

so that Y2 is X2 minus its projection on Yl' Note that

(1.16) <'112' Yl) = o.
Similarly, we put

(1.17)
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so that 'U3 is X3 minus its projection on the plane of 'UI and 'U2. Note that,
because of (1.16),

<Ya, Yl) = <Ya, Y2) = o.
Suppose the vectors Yh Y2, .. " Yj 1 (j < k) have been defined; then we
put Yj equal to Xj minus the sum of its projections on the vectors Yb Y2,

.. ,Yj 1. Clearly, Yj is orthogonal to Yh .. " Y j 1. Also, Yj is not the
zero vector fo.r, if it were, Xj would be linearly dependent on Yl, Y2, .. "
Yj-l and therefore dependent on Yh Y2, .. " Yj-2, Xj-l because of the
definition of Yj-l' It follows that eventually Xj would be linearly depen-
dent on Xh X2, •• " Xi h but this contradicts our original assumption that
the vectors xh X2, .. " xk are linearly independent. Consequently, the
process generates a set of non-zero vectors that are mutually orthogonal.

The vectors Yj (j - 1, 2, .. " k) can be normalized, that is, multiplied
by appropriate constants so that their lengths are unity. Thus, put

then

Since the vectors Yj are mutually orthogonal, the vectors Zj are also
mutually orthogonal. We write

(1.18) <zi' Zj) = bij ,

where t5 ij' the Kronecker delta, is defined as follows'

(t.19) ~ij - 0, i ¥= j,

= 1, i = j.

A set of vectors satisfying (1.18) is said to form an orthonormal (O.N.)
set. The SChmIdt orthogonahzation process shows that any given set
of vectors may be transformed into an O.N. set; consequently, we may
assume that every finite-dimensional subspace has an O.N. basis.

By the use of Problem 1.17, we may show that if an a.N. set of vectors
spans an infinite-dimensional space, the O.N. set is a basis for the space.
Suppose that Zh Z2, ••• is such an a.N. set and let x be any vector.
Since the a.N. set spans the space, then for any 8 > 0 there exists a linear
combination

Xk = oc,z, + ... ±---,oc=lk~Z~k _

Nuch that
Ix X/c 1----""<~13~·-----------

However, Problem 1.17 shows that

Ix - Zl(Zl, x) - ... - Zk(Zk, x)~~,x'---==---.X""'ik!o+I-----<~8~;------

consequently, the sequence of sums
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converges to the limit x; and we may write, 0.'

x = Zl<Zh x) + Z2<Z2' x) + ....
In a later seytion we shall dlschss the problem of representing x in

ierInsof ~b~si~whichis 'riot O.N.
; '-.

. ,. ,'" -,"'. .. .' ~ . \ .. " .- ;' , . ,:" ..

PROBLEMS
l...17~ Stip'pos~ th3:t'Zb Z2~ ... is an O.N.~eL 'Find that linear combination

(XI-it -+ . :.: '+.~ V{hiCh best approximates a 'given vector x in the sense that

is a minimllm; then, prove~essel's)neql(qlity, namely,
, .-:.-" " ", ,.", ... ,'.

, ,~<x, Xc) :><Zh x>~+ .. ·*\.?'k, X)2.

(Hint.;: Wdte the:square\Qf:th~de:stre:d~minimumlength as a scalar product Bnd
show.that ....' " '.,.' "

aj = <z, x>~ r 1,~,···, k.)
1.18. In the space of .e 2 functions over the interval (- 1, 1) with the scalar

product

fl

Projection Theorem and Linear Functionals

pl~p.e ..... 11lis\\Iell-kllowngeometric fact )l1ay be' extended, to abstI act

Consider a plane through the origin in Ea and a vector y which does
not lie in the plane. Suppose that the vector y is projected on the plane;
then th,e, d~ff{(rencebet~e.eny and itsprojection will be a veptor perpendicu­
lar totll~ plap.~, :that ,i~, 'a vect9rperpendicularto all vec~o,rs, x lying in the

linear' vestOf,spaces. '1h~ resuJt 9f this extension will have very useful
appli9atipnsinJat~r s,e~tiQlts. ..•.. .•.... , . ,

.~etj}{ be a ,linear subspace in $. If e5U is not the whole space $,

orthogonal to 3r[,. that is,

<y - w, x) - 0

whenever x belongs to C!5U.
A proof of this theorem may be found in Appendix 1.
To illustrate these concepts, assume (t~ isEa tllld ".m~i'--s-t'-h-e---'l-'-in-e-a-r-s-u'-b---

space of all vectors whose components are cq ual, that is, x is in t.llJrl if
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w will be the vector n, A, A) and y w, t.he vector (~, A, l). We
have

',,, ..
;<:

exactly as' stated'itfthe ProjecttoriThe()rem:. :;:.
Uishrtportant to nbte that die theorem as' stated requires ...:At t6 'be·g

lineaFsUbspace. The! theoretriwoti.ld ndt:be true: if'j)[were fa Iinear inaniL
fold'" on'ly :Fdr'exarnpl'e,'l~t'$"he ~·'and···let/Jrl.be the previbuslycbn-
sidered! linear' manifdld6f 'vectors' whieh 'have "only a 'finite' n1.unber ;Of
components different from zero. Let

.• t;' " ....., •...•. 1·.·
y = (1', !, 1-, "', :-, . . -).

n

The vector y IS not in :lit, and yet.we shall show that a projectIon w of y

II·'m:..· x' -""x',n " <'. ;;.,..

implies that .\,'

lim!(xn): f(x). ' .

The functional is bounded if there; C'xists a~onstant p, such that

----------------il&lJ <MI~I .. ~.. ,.\ "" ,,'
for all x in S. In Problem 1.23 it is shown that a bounded linearfunc­
tional is continuous, and also the converse, a continuous linear func-

,... ':..,

tional must be bounded.
The following are examples of continuous linear functionals.
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In the space £2 of square integrable functions u(t) over (0, 1) we may take

feu) = f: tu(t) dt.

Note that in the first example f(x) is equal to the scalar product <z, x).
where z is the vector 'vVith components 1, 1, 1, whereas in the second
example f(u) is equal to the scalar product <t, IU(t). Given any linear
vector space $, it is apparent that every scalar product <z. x). where z is
a fixed vector, is an example of a continuous linear functional. We shall
prove the converse: every continuous linear functional is a scalar product.
This is the content of

Theorem 1.1. If f(x) is a continuous linear functional, there exists a
"Vector z in cS such that

j(x) = <z, x).

Since f(x) assigns a real number to every vector in $, we may consider
the functional as a mapping of the vector space into a one-dimensional
space, the real-number line. This consideration suggests that the func-
tional is characterized essentially by one vector; we shall show this to be
the case.

Let:Jrf be the set of all vectors Y such that f(y) = 0. 3Y[ is a linear
manifold because f(Yl) = f(Y2) = °implies that f(OCIYl + OC2Y2) = 0. If
Yl, Y2, • . . is a sequence of vectors in :Jr( which converges to a vector x
then, because f(x) is continuous,

f(x) = limf(Yn) = 0;

therefore, :Jrf is a subspace.
Clearly, the desired vector z must be orthogonal to 3rC. If:M is the

whole space, then for all x in $, x is in 3r[; hence

f(x) = °= <0, x)

and we may take z - o. If :JJt is not the whole space, there exists in cS
a vector Yo, not in :M, such that f(jJo) i= o. From the Projection Theorem
we know that Yo has a projection w in 3r[ such that the non-zero vector
Y = Yo - w is orthogonal to:Jrf. Note that

f(y) - f(yo) ¥ o.
We put z ~ ocy where the constant IX is so chosen that

(1.21) fez) = (z, z).

Solving this equation, we have

(11, 11>
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Si nee '!J was orthogonal to 3r[, we have

(x', z) = 0

21

for any vector x' in ;Ji[.
We shall show that this vector z is the desired vector. Consider any

vcctor x in CS. If

'hcn
( I.22) f(x (3z) f(x) f3f(z) 0;

consequently, the vector x - fJz is in 3r[ and therefore

<x - flz, z) - o.
Since, from (1.21) and (1.22), we get

(x, z) = (x - fJz + pz, z) = fJ(z, z) = fJj(z) = j(x),

we have proved Theorem 1.1.
By the use of Theorem 1.1 we can now dISCUSS the problem of repre-

Nt'llting a vector x in terms of an arbitrary basis. Suppose that <S is a
Unite-dimensional space En' and let xI, X2, ••• , Xn be a basis of the space.
We know that any vector x in En may be written as follows:

We shall show how the coefficients IXI, IX2' •.•, IXn may be determined.
Consider the coefficient IXI. Its value depends upon the vector x, and

'hcl'cfore IXI is a functional of x. Obviously, it is a linear functional. If
We can show that IX] is a bounded functional also, Theorem 1.1 will apply
Ulld. therefore, there will exist a vector Zl such that we may write

(Xl = (ZI, x).

Similarly, there will exist vectors Z2, •••, Zk such that

IXj = (Zj, x), j = 1, 2, ... , k.

I he proof that IXI is a bounded functional follows from Problem 1.15.
I here it was shown that

_________~ > Y(IXt + IX~ + ... + '1;)1/2.

I his implies that

IIXII <Ixl/y;
cOIIHcquently, (Xl is a bounded functional.

We may then write
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Suppose that we put W Xi (i 1,2, '.' " n) in (1.23); then we have
n

Xi = .2:Xj(Zj, Xi>'
1

Since the vectors 'Xl> •• " Xn a.re linearly independent, this equation implies
that

(1.24) (Zj, Xi> = ~~'j' (i, j = 1, 2, .. " n).

We shall say that the vectors Zh .. " zn are a reciprocal basis to the basis
vectors xh .. " xn • Our discussion has shown that, given an arbitrary
basis, there always exists a reciprocal basis satisfying (1.24).' We shall
use this result later.

.,. PROBLEMS

and w is the projection of y on :Jt(, showtha.t

Iy - wi < Iy - xl·
(Hint. We have Iy - XI2 = Iy - w+ w- XI2 = Iy - wl 2 -+ Iw - xI 2.)

1.20. In Esfind the projection qf. the veetor (l, 1, 1) on the plane
Xl r 2X2 + 3x 3 O. '., Show that thelength of the vector difference between
the vector and its projection is equal to the distance of the vector from the
plane.

1.21. Find all vectors in E4, which, are orthogonal to the subspace defined by
the equations XI X 2 X 3 X 4 - O. The set of all such vectors is called the
orthogonal complement of the given subspace.

1.22., Giv~nf(t) in, £2 over (0, 7T), let g(t} be that lin~ar combination of sin!,
sin2t, sil) 3twhich make,s.,

'; ii. J:.[I(t) ,'g(t)]2 dt

it miriimum: sn.dvJid:iat g'(t)'ts the projectibn of iff) on the subspace spanned
by sin t, sin2t,si1i'3t~ thaf is, show thatf(t)'~'g(f) is orthogonal t6ahy linear
combination of sin t, sin 2t, sin 3t.

1.23. Prove that a bO,unded linear functional is continuous Prove that. ~
contmuous linear functional· is bounded. '. (Hint. . Suppose there exists' ··a
sequence of vectors X n such that tx;1 < 1 and such th~lt If(xn) \ < n; then the
sequence .xn/n converges to the zero vector and by continuity f(xn/n) converges
to zero;' but ,1(x1iY1i)!>1.)- i -

Linear Operators

An important concept in the theory of linear vector spa~es is thfilt of a
mapping of the space onto itself. In E 3 a rotation of the entire space about
a fixed axis, or a uniform expansion around a point, or a translation of the
space are examples of operations that' map the space onto itself. It is

t The distinction between the basis and the reciprocal basis is essentially that be-
tween covariant and contravariant vectors.
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easy to see that the operation of rotation or of expansion ca n be repre-
sented by a matrix with elements (Xij, (i 1, 2, 3; j 1, 2, 3), so that if
~h ~2' ~3 are the components of an arbitrary vector in E3 before the
transformation and ~h ~2' ~3 the components of the transformed vector,
then

___________~.w..l__(X__'1LJ._l~"'__'1'__+_(X~1~2~"'__'2"'_______'+~(X~13'_"'~_<L3,~ _

(1.25) ~2 = (X21~1 + (X22~2 + (X23~3'

~3 = (X31~1 + (X32~2 + (X33~3'

We write this in matrix form as
(1.26) z - Ax,

where A denotes the matrix whose elements are (Xij'

The operation represented by the matrix A has the property that if the
vector Zl corresponds to the vector XI, and the vector Z2 to the vector X2,

then the vector (XZI + PZ2 corresponds to the vector (XXI + PX2' Such an
operation is said to be linear.

The equations (1.25) determine the vector z if the vector x is given. It
is also important to solve the inverse problem: given z, determine x. This
is essentially the problem of solving the set of simultaneous linear equa-
tions (1.25). We know that the existence and uniqueness of the solution
depend on whether there exists a non-zero solution of the homogeneous
equations

Ax =0.

We shall find that similar results hold for more general operators.
We wish to give an abstract treatment of the theory of linear operators

which will cover many of the cases that are met with in applied mathe-
matics. Some of the operators to be considered are the following:

(1) n-rowed square matrices in n-dimensional space in which case
(1.26) represents n simultaneous linear equations.

(2) Integral operators in J!2 in which case (1.26) would symbolize the
integral equation

(1.27) get) = J: K(t, s)u(s) ds,

where the kernel K(t, s) is any continuous function of t and s.
(3) Translation operators in X2 in which case (1.26) might represent

I he following difference equation:

get) = u(t + 2h) - 2tu(t + h) + f(t)u(t).

(4) Differential operators in .E2 in which case (1.26) might be a differ-
l'lItial equation

( 1.28) (d2

Jg(t) = dt2 +. t2 u(t).
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This last case illustrates some of the difficulties that the abstract treat-
men! faces. The differential operator cannot be applied to every function
I(t) in 1:2 for the following two reasons: first, not every function in .E2
has a first derivative, let alone a second derivative; and, second, even if
f(t) has a second derivative, it need not belong to £2, and hence the
result of the operation does not necessarily belong to £2' Consequently,
the differential operator can be applied only to such functions in .E2
which have second derivatives that belong to .E2•

Abstractly, an operator L is a mapping that assigns to a vector x in a
linear vector space cS another vector in cS which we denote by Lx. The set
of vectors for which the mapping is defined is called the domain of L.
The set of vectors y which are equal to Lx for some x in the domain is
called the range of the operator. An operator is linear if the mapping
IS such that for any vectors xI, X2 in the domain of L and for arbitrary
scalars CXI, CX2, the vector CXIXI + CX2X2 is in the domain of Land

L(CXIXI + CX2X2) = cxILxI + cx2Lx2'
A linear operator is bounded if its domain is the entire space cS and if
there exists a single constant C such that

ILxl < Clxl
for all x in $. It is easy to show that a linear bounded operator is con­
tinuous; that is, if a sequence of vectors xn converges to x, then L(xn)

converges to L(x). In this chapter we shall consider linear bounded
operators only. Consequently, our theorems will not apply immediately
to differential operators since these are always unbounded. However,
we shall see in a later chapter that most of the theorems can be extended
so that they will be valid for differential operators.

PROBLEMS

1.24. Consider the following operators in Eoo :

If x = (ch ~Ih •• '), then
(a) ex -- (0, ~b ~2' •• '),

(b) Dx = ($2' ;3' ';4' .. '),

(c) Ex = (';b 1';2, !';3' .. '),

(d) Fx =-= (';b 2~2' 3';3' .. ').
Which are bounded?

1.25. Let L be a linear operator. Prove that if L is bounded, it is continuous,
and, conversely, if L is continuous, it is bounded. Prove also that, if L
is bounded,

L(xl + X 2 + ...) = LXl + Lx~ + ....
(Hint. Compare Problem 1.23.)

1.26. Put ?' equal to the least upper bound of~ :", t. Show that
\Lx\ s: ,'Ix\ for all x. Put Ij equal to the lcast upper bound of 1(I.x, y)\ for
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------f.4--=-+y1 1. Show that 1(Lx, y)~ for all x and y. Prove that
j'- <5. (Hint. Put y Lx in <Lx, y) and prove I' < (5. Use the Schwarz
inequality in Problem 1.6 to prove I<Lx, y)\ < ylxl'lyl and thus c5 < y.)

I{epresentation of Operators

Every bounded hnear operator may be represented by a matnx. 'lhe
matrix will have a finite or an infinite number of rows according as the
di mension of $ is infinite or finite. To show this, let el, e2, ••• be an
O.N. basis in $; then every x in $ may be written in the 'form

Since L;r; is also in S, we may write

Lx = PIel + P2e2+ ...;
but L is a bounded linear operator, therefore by Problem 1.25

II' we now put

we fi nd that

('Iearly, the right-hand side of this equation is the result of multiplying
Ihe matrix whose elements are Yij by the column vector whose elements
nrc ex.;. Consequently, in terms of the vectors eh e2, ••• as a basis, L is
reprcsented by the matrix whose elements are Yij where

Y ij = <ei' Lej)'
Note that a matrix representing L can be found by using any basis and

1101 necessarily an O.N. one. Of course, a change in the basis changes
1111,' matrix representing L. In Chapter 2 we shall study the different
II III I"iccs which may represent a given operator L.

II' the bounded operator L is such that its range is finite-dimensional,
I hili is, if for every x in $, Lx belongs to some k-dimensional manifold
H U. we may obtain another useful representation for L as follows:

Let :~b •• " xk be a basis for j)'t; then

Lx = CIXI + ... + C~k'

wht'l'c the coefficients Ch ••• Ck are scalars whose value depends on x.
10 Indicate this dependence, we shall write CI = CI(X), etc. From the
1'\llllltions

~ll1d

----£.I1L(f.vx-=+ y) - [c] ex) + Ct(Y)]Xt + .. .+ ["k(x) + c,CCy)]W-lXkl<-----

II follows that the equivalent of (1.20), namely,
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is valid; consequently, CI is a linear functional of a1. Similarly, the other
coefficients C2, •••, Ck are also linear functionals.

Just as in the proof given on page 21 for the existence of a reciprocal
basis, we may use Problem 1.15 to prove that these functionals are
bounded. Then by Theorem 1.1 there exist vectors Yh ..., 1Jk such that

This shows that

(1.29) Lx = Xl<Yh x) + ... + xiYk' x).

We shall now explain a useful notation which was introduced by
Dirac in his book on quantum mechanics. We have shown that if a
space has finite dimension k, that space is equivalent to Ek and every
element in it could be represented by a set of k scalars. These k scalars
could be considered arranged in a column (we call this a column vector)
or in a row (row vector). Up to now, this distinction between row and
column vectors was unimportant.t However, when we introduce the
concept of mappings, the distinction becomes important. We shall use
the symbol x) to indicate that x is represented as a column vector, whereas
<x will indicate that it is represented as a row vector.

This notation is consistent with the notation for scalar product since
if we put

x) =

and

then

is the ordinary matrix product of the row vector for y by the column
vector for x. Note that the matrix product of the vector x) by the vector
<y in that order is the following matrix:

(1.30)

t The distinction is essentially that between u covuritU1t and a contravariant vector.
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Vie shall use the symbol x>(y to denote the matrix in (1.30) and a sum of
such symbols

X1)<Y1 + x2)<Y2 + ... + xk)<Yk

to denote the matrix sum of the corresponding matrices.
Now suppose that henceforth we represent x and the basis vectors

:t"l' x2, •• " X k by column vectors; then (1.29) may be written as

Lx) = X1)<Yh x) + ... + xk)<Yk' x).

The form of this equation suggests that we formally cancel the "common
factor" x) on both sides. In this way, we get

(1.31)

This formal equation is actually correct, for after introducing a basis=it
can be shown that L is represented by the matrix on the right-hand side
of (1.31).

For another illustration of this notation, suppose that <:5 is k-dimensional
Llnd that the vectors Zh Z2, ..., Zk form the basis reciprocal to Xh •••, Xk.
Iry is any vector in $, from (1.23) we have

y) = X1)(Zh y) + ... + xk)(Zh Y);

consequently, the identity operator I in <:5 may be written as follows:

(1.32) I = X1)<Z1 + ...+ xk)<Zk.

An operator that can be represented in the form (1.31) is called a dyad t
or, if we wish to be more explicit, a k-term dyad. If a dyad is an integral
operator, its kernel is said to be degenerate.

We shall also write

if the infinite sum
a1<bh x) + a2<b2, x) + ...

t..'onverges to Lx for all x.

The sum and the product of operators are defined in a similar way to
I ht sum and product of matrices. If L 1 and L 2 are bounded linear
operators, the sum L1 + L2is defined by the equation

HIll! the product L1L2 is defined by the equation

(L1L 2)x = L1(L2x).

Of' course, just as with matrices, multiplication is not commutative;

t The ''lame is take., from the corresponding concept in vector analysis.
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However, the associative law for multiplication does hold. We may
therefore form powers of operators, for example, £,L2, etc. If \ve define
multiplication of L with a scalar (f.. by the equation

(rx.L)x = rx.(Lx),

we can define polynomial functIons of operators. It is easy to show that
the usual rules of algebra, except those which depend on the commutative
law, will hold for such polynomials.

From another viewpoint, the set of linear operators on $ may be con-
sidered a linear vector space. In Problem 1.27, we shall show how a scalar
product of two operators L 1 and L 2 in this space may be defined.

PROBLEMS

1.27. Define the scalar product of a dyad X1)(Yl by another dyad U1)(V1as
follows: The scalar product is

[X1)<YI, 'UI)<'VI] = «Yh u I») (<.VI, Xl»)'

Extend this definition to the scalar product of two k-term dyads by using the
linearity of the scalar product. Show that this definition satisfies (1.7) and
(1.8).

1.28. If A is a k x k matrix, show that it may be written as a k-term dyad.
If I is the identity k x k matrix, prove that the scalar product, as defined in
Problem 1.27, of A by I is the trace of A. (Hint. Use the vectors ei, (i = 1,
2, .. " k), which have their ith component equal to one and the other compo-
nents zero, as a basiS for the space.)

1.29. If L is a k-term dyad, show that for every X in S there eXists a poly­
nomial pet) of degree k + 1, at most, such that p(L)x = O. (Hint. The k + 1
vectors Lx, L2x , .. " Lk +Ix must be linearly dependent.)

Inversion of Operators

The fundamental problem in the theory of operators is the inversion of
the operator, that is, given a vector a, to find a vector x such that

(1.33) Lx = a.

We shall discuss hO\1/ this may be done in some simple but nevertheless
important cases.

Case 1. L is a dyad. Assume that L is a one-term dyad. If

L - at) <bh

then (1.33) becomes

(1.34) a1<.bh x) =a.

Here the vectors ah bh and a are known and the vector x is to be deter-
mined.

Since the left-hand side of (1.34) is some scalar multiple of the vector
ab the right-hand side also must be a multiple of al; consequently, (1.34)
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has a solution if and only if the vector a is a scalar multiple ofal. Assume
that u - /xUI; then (1.34) becolnes

<bI, x) = (X.

One solution of this equation is

but if c is any vector orthogonal to b, we see that

Suppose now that L is a k term dyad. We may write

L = al)<bl + a2><b2 + ... + ak><bk,

and then (1.33) becomes

(1.36) al<bI, x) + a2<b2, x) + ... + ak<bk, x) = a.

.J lI~t as before, we see that, in general, a solution of this equation exists if
and only if a is a vector in the linear manifold spanned by the vectors ab
alt.• ..., ak. Suppose that the vectors ab ..., ak are linearly independent
and suppose that

then (1.36) reduces to

<bI, x) = (Xi' i = 1, 2, ..., k.

'1'0 find x, we assume that

x = ~lbl + ~2b2 + ... + ~kbk'

It nd we get the following system of k linear equations in k unknowns:

<bI, x) = ~1<bI, bl ) + ~2<bI, b2) + ... + ~k<bl' bk) = (XI,

<bk,x) = ~I<bk' bl ) + ~2<bk' b2) + ... + ~k<bk' bk) = (Xk'

1r these linear equations do not have a solution, (1.36) also does not have
II Nolution. If the above linear equations do have a solution, every
Imlutioll of (1.36) will be of the form

x = ~lbl + ... +~kbk +p,

where p is a vector orthogonal to all the vectors bb b2, •••, bk.
e % r. h . ~ . t ~ ~ f) -.A • fi t th t j)

IN ol1e tefln al>(b1• The equation Lx = a becomes
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The method for solving this is to determine the value of (bIt x) as follows.
Take the scalar product of (1.37) with the vector hI' We get

(1.38)

and then

if the denominator 1 + (hI, ot> is not zero. IIsing this va.lue for (hI, x)
in (1.37), we find that

We must now show that this expression for x actually does Solve (1.37).
It is conceivable that (1.37) does not have any solution. All that we have
shown so far is that if (1.37) has a solution, it must be given by (1.38).
However, by substituting (1.39) in (1.37), we see that the left-hand side of
(1.37) is

a
1 + <hI, al)

and this reduces to a; consequently, if

then (1.39) is the unique solution of (1.37).
Suppose that

1 + <hI, al) = 0;

then (1.38) shows that we must have

<hI, a) = O.

If <hI, a) =F 0, (1.37) has no solution, since it leads to a contradiction. If
(hI, a) - 0, then x - a is one solution of (1.37). It is readily seen that
every solution of (1.37) is given by the formula

where ~ is any scalar.
Suppose now that D is the k-term dyad

The equation Lx = a becomes

(1.40) Ix I Dx x -1 al<hh x) -1 •.. -I- ak<bk, x) a.

Again, the method for solving this equation is to determine the values of
the scalar products <bit x), · . " <hie, x). Multiply (1.40) by the vectors
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bh ..., bk in turn, and the following system of linear equations is obtained:

(l + (bh al)J(bh x) + (bh a2)(b2, x) + + <bh ak)<bk, x) = <b1, a),

<b2, al)<bh x) + (1 + <b2, a2))<b2, x) + + <b2, ak)<bk, x) = <b2, a)
(1.41)

<bk, al)<bh x) + <bk, a2)<b2, x) + ... + (1 + <bh ak»)<bk, x) = <bk, a).

After the values of the scalar products <bh x), ..., <bk, x) are obtained
by the usual methods for solving simultaneous equations, we find from
(lAO) that

x = a - al<b1, x) - ... - ak<bk, x).

As an illustration of this method, consider the following integral
equation:

(1.42) u(t) + AJol
su(s) ds = f(t),

wheref(t) is any function in £2 over (0, 1). This equation may be written
1./11, = f, where L is the identity plus the one-term dyad A)<S. Here A
corresponds to the vector ah and t (or s, since the variable of integration is
immaterial) corresponds to the vector b1.

To find u, multiply (1.42) by t and integrate from 0 to 1. We get

11 it 11
1 11

-------)0 tuet) dt +)c 0 t dt fo suCs) as - jo-----rtJHr(~t).---.d..Ht-------

or

fol
sues) as (1 + ~) = S; tj(t) dt.

Solving for the integral of su and substituting in (1.42), we find that

u(t) = jet) - A(1 +~) -1 f: tj(t) dt,

I ''f- 2. If A 2, (1.42) does not have a solution unless

J: tf(t) dt = 0,

ill which case u(t) = f(t) + oc is a solution for any value of oc.
Vie may summar ize the discussion of this section in the following

Rule. To solve

( I .40) (I + D)x = a

II'hc're D is the k-term dyad

Iilk (' the scalar product of (1.40) with each of the vectors bh ..., bk and then
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solve the resulting set of simultaneous linear equations (1.41) for the scalar
products (bi , x), i - 1, 2, .. " k. Finally,

x = a - Dx.

There is one speCial, but nevertheless Important, case in which the slmul-
taneous equations (1.41) have an immediate solution. In this case

(1.43) <bi' aj) = 0

if i -=1= j; for then the matrix of the coefficients in (1.41) reduces to its
diagonal' terms only, and we have

A dyad D such that (1.43) holds is said to be in dzagonal form. Simi-
lady, if an operator L is written as an infinite sum of dyads,

L = al)<b1 + a2)<b2+ ...
such that (1.43) holds for all i =J=. j, then L is said to be represented in
diagonal form The advantages of the diagonal representation are many.
For example, to solve the equation Lx a \vhen L is in diagonal form,
we assume that a solution exists and put

x = 'S~jaj.

From (1.43) we have

~ _ <bj, x)
j - <bj, aj)·

Taking the scalar product of the equation Lx = a with the vectors
bh bg, ••• , in succession, we get

consequently,

3' 3
,} <b. a)2

and

One of our main goals will be to determine how to diagonalize operators.
This question will be discussed in detail later. At present, we just note
that if L is in diagonal form, then

(1.44) La} Ajaj, j:- 1, 2, .. "

where
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A vector aj such that (1.44) holds is called an eigenvector of L corres-
ponding to the eigenvalue Aj. We shall see that the problem of diagonal­
izing an operator is equivalent to the problem of finding all its eigenvectors.

PROBLEMS
1.30. Discuss the following integral equation for u(s):

fo1
sin k(s - t)tt(t) dt = f(s).

(Hint. Since sin k(s - t) = sin ks cos kt - cos ks sin kt, the operator is a two-
term dyad.)

1.31. Discuss the following integral equation:

r1 1 - sntn
-----------;}of\-----1-1---..s+-t_u-,,--(tL-)-,-,-dc-t------"j'---'·(~s)'___. _

(flint. The operator is an n-term dyad since

1 - sntn
--- = 1 + st + S2(2 + ... + sn-1tn-1.)
1 - st

1.32. If f(s) is any function in .e 2 over (0, 1), solve the following integral
equations :

(a) u(s) + fo1
sin k(s - t)u(t) dt = f(s),

(b) ( ) 11 sin (2n + l)7T(S - t) () d = f( )
ttS + "'. I 'I ut t s.

-------- elt-----"'ys~1ftR--'7'l1r'P.\s~---1-1t}f----------------------

(Hint. The integral operator in (b) is a dyad because

sin (2n + l)7T(S - t) _ ! ~ 2k ( _ »
2 · ( ) - 2 + £.J cos 7T st.sm 7T s - t 1

1.33. Consider the equation Dx - a where D = a1)<b1 + ... + ak)<bk
nnll where

<ai, aj) = <bi' bj ) = 0
If'tl' j. Show that if a is in the manifold spanned by the vectors a h •• " ak,

k

<aj, aj)<bJ , bj)'
1

1.34. Use Problem 1.33 to s<?lve the infinite set of equations

00 (1 1)am ZEn<n2m + 1 + 2m +f' m 0, 1,2, ...,
o ~ 2 - n 2 + n_

where B 0 = 2, and en = 1 for n = 1, 2, ' . '. (Hint. The operator is
" 0' 2 + 1>, cos 17ct»<COS _.'! 2 tP on the space of t 2 functions over (O,7T). The matrix
II

I't'presentation is obtained by introducing cos ntP, n - 0, 1, 2, ..., as a basis for
IItt' space.)
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Inverting the Identity plus a SImlll Operator

The fundamental problem of inverting the operator equation Lx = a
may be considered from the viewpoint of finding an operator inverse to L.
This inverse operator, written L-1, is a bounded linear operator such that

LL-l = L-IL = I,

the identity operator. In many cases, the inverse operator does not
exist. In some cases, only one of the above equalities is satisfied. For
example, consIder the follOWIng operators In £00 :

If

then
Cx = (0, ~h ~2' •• '),

We shall call C a "creation" operator because it creates an extra compo­
nent, and analogously we shall call D a "destruction" operator. Now

DC 1,
but

CD i= I.

We say D is a left-sided inverse of C but C has no inverse.

There is one important case in which the operator L can be proved to
have an inverse. Write L = I + M; then the notation for the inverse
operator suggests that

L-1 = (I + M)-I = I - M + M2 - M3 + ....
We shall show that this formal result will be correct if the operator M
satisfies the expected condition for convergence of the right-hand side,
namely, that M be, in some sense, less than one. \ More precisely, we
shall prove

Theorem 1.2. If for all vectors x,thel'e exists a constant y, independent
of x, such that 0 < r < 1 and such that

IMxl < rlxl;
then

(I + M)-l = I - M + M2 - M3 + ....
The proof of this theorem will consist of two parts. First, we prove

that the partial sums of the infinite series on the right-hand side converge
to a limit and, second, we show that this operator is the inverse of 1 + M.

For the first part, put
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For any vector x, we have (assume n > m):

ISnx - SmxAM'mx - M'tn+I;C + .... (_)n m IMn-lxl

< IMmxl + IMm-t-lxl +. . . -1- IMn-lxl

by the triangle inequahty (Problem 1.8b). Since

--------t-rI1\Y.t-"/2";h-XHM(Mx)I< y~1 < y2~r.-,------

and, similarly,

----------IMkXI < yk~n.-, _
we find that

m
ISnx - Smxl < (ym + ym+1 + ... + yn-1)lxl < -1~Ixl.

-y

By hypo~hesis, y < 1; therefore, we can find an integer mo such that for
m > rno, we have

ym< e(l - y).

This proves that the sequence Snx (n = 1, 2, ...) converges in the Cauchy
sense. Since our space is complete, the sequence will converge to some
Iimit vector y. We define an operator K by the equation

y = Kx = lim Snx.

It is readilY,seen that K is a linear operator and that K is bounded by

1 +y +y2 + ... =(l-y)-l.

For the second part of the proof, consider the product

Sn(I + M) = I + (_)nMn.

1'1'or any vector x, we have

Since IMnxl < ynlxl and since y < 1, we find that

lim Sn(I + M)x = x.

All we need show now is that lim Sn(I + }J) K(I + lJ). This fact
hcco.mes evident from the following results:

ISn(I + M)x - K(I + M)xl = I(Mn + 'Mn+l + ...) (I + M)xl
n

< (yn + yn+1 + ...) 1(1 + M)xl < y (1 + y)~~. _
1- y

Similarly, we may show that

(I + M)Kx = lim (I + M)Snx = x;

,,'ollsequently, we have proved Theorem 1.2, that

K = lim (1- M.+ M2 - ... ( _)n IMn I)

(M the inverse of I -1- M.
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The infinite series in Theorem 1.2 is called the J.\"eumann series for the
inverse operator (I + ]Y1) 1. This series may be obtained also from the
equation

(1 + M)x = a

by an iteration or a perturbation lnethod. With this approach, we con-
sider Mx as a "small" term and write the equation as follows:

x = a - Mx.

To obtain an initial approximation, we neglect the term Mx and put
Xo = a. For the next approximation, we replace Mx by Mxo and get
Xl = a - Mxo. Similarly, we put

We must now determine whether lim Xn exists and whether it equals x.
By successive iteration of this equation, we find that Xn = Sn+la. If M
satisfies the condition of Theorem 1.2, then the lim Sn' and consequently
the lim xn , exists and is equal to x.

There is another possible approach to the Neumann series. For the
sake of convenience, consider the equation x - a elvfx where e is a
scalar, instead of the equation X = a - Mx. Assume that

x = ao + eal + e2a2 + . . .,
where llo, ah ... are unknown vectors independent of e. Substituting
this series in the equation for x, we get

ao + eal + e2a2 + ... = a - eMao - e2Mal - e3Ma2 - ...,

and, after equating corresponding powers of 8, we get

ao =a

an+l = - Man, n = 0, 1, 2, 3, ...
or

Using this result, we obtain

x = a - eMa + e2M 2a - ...,

which reduces to the Neumann series when we put e = 1.
To illustrate this discussion, consider again the integral equation solved

in the preceding section, that is,

fl .
----I(H-l~.4~2)1-------------'Uu.t--t(t+-)""F+"----AAJo su(s) d8 -. }(t).

Assume that
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Substituting this in (1.42) and equating the coefficients of corresponding
powers of Je, we get

uo(t) - f(t).

Solving these equations, we find that

U1(t) = - L_1--"-sfi--'o.-Cs--L)-d-s----------­

------------""u~2(c"-Jt)J--==---il!-Jolsf(S) ds, etc.

Finally,

Je f1
= f(t) - 1 + Aj2Jo sf(s) ds,

the result we obtained originally.
NotIce that the iteration method can be applied only If the infinIte

series converges. Theorem 1.2 states that the series converges if the
bound of the operator M is less than one. Now, from (1.42),

111,.,1 _ I ~ fl 1 I ~I{ fl \1/2{ f1' )1/2
---------I~o su(s)ds~o S2 dSr-----tJo 21-'" ds 1--------

= 3-1/ 2 !Allx!
hy Schwarz's inequality; consequently, Theorem 1.2 will apply if IAI < 31/ 2•

However, inspection of the Neumann series for this case shows that the
series converges when ~ < 2 but diverges when 1-11 > 2. This example is
un illustration of the fact that the Neumann series may be used in cases
where Theorem 1.2 does not apply, but it also shows that there are cases
where the Neumann series cannot be used.

PROBLEMS

1.35. Show that the Neumann series converges if there exists an integer k, a
,,~ullslant C, and a constant y, where 0 < y < 1, such that the hound of Mk+n

IN nol greater than C)ln (n = 1, 2, 3, ...).

1.36. Show that, if Mu = A 0 su(s) ds, the bound of M is not greater than

IA,IA'2 k I 1/2, (k = 1, 2, ...); then use Problem 1.35 to show that the Neumann
'~I'ics converges ~r ~~~~2_.-------------------~

1.37. Show that, if ttM'lt(t) =0 q(s, t)u(s) ds,
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where q(.s, t) is a continuous function of both sand t, the Neumann series for
(l t }J)-l converges. (Hint. Let I'llt) be the absolute value of ...yku(t) for

o< t < to and let f~ q(s, t)2 ds < k(t)2 for 0 < t < to; then Itk(t)2 < k(t)2

--f~ flk_l(S)2 ds by Schwarz's inequality. By induction, show that

k(t) Lit ~to
------------npwn(r-tt)~2--«~(n~~1)=1!\fo k(s)2 ds) Jo---1um(c\'-s)p<-2--('jd':('l-:s.+)-------

Completely Continuous Operators
Suppose that the operator L may be wntten as the sum of an operator

Y which has an inverse and an operator Y which is a k-term dyad; then
the equation

Lx = (Y + Y)x = a

may be solved as follows.
Since Y has an inverse V-I, we apply it to the above equation, and it

becomes

(l.45) (I + y-l Y)x = V-lao
Suppose, now, that

then
y-l Y = y-lal><bl + y-la2><b2 + ... + y-lak><bk

also is a k-term dyad. Consequently, the operator in (l.45) is the identity
plus a k-term dyad, and therefore (l.45) may be solved by the methods
discussed on pages 28-31.

As an illustration of this method, consider the following integral­
differential equation:

---------U=-/¥(t),/----+~).J:u(s) ds = f(t),

with the initial condition u(O) = o. We invert the differential operator
by integrating from 0 to t, and we get

(1.46) u(t) + Att u(s) ds = tl1-'tj_'(~s)_d_s. _

The operator on the left-hand side is the identity plus the one-term dyad
).t><1. To solve this equation by the method of pages 28-31, we must

first find the value of the scalar product J: u(s) ds. This can be don~ by

integrating (1.46) froni 0 to 1. We find that

f: u(t) dt(1 +~) = f: dt fo'f(s) ds = f: (1 - s)f(s) tis.

Consequently,

f (1 +~rfo u(t) dt = -- 2 ~ (l - 3)l(s) ds,
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u(t) = fo' f(s) ds - At(1 +nI fo' (l - s)f(s) ds.

The methods of this section can be applied also to the case where
L - I + K if K is an operator which can be uniformly approximated by
dyads. This. means that there exists a sequence of dyads Kn such that

1· I(K - Kn)xl 0
1m tx1

uniformly for all vectors a~ or, in other words, given a positive number 8,

there exists an integer no, independent of x, such that

(1.47) IKx Ixjt--
K

_
nx

_
1<_8 _

for all values of n > no. Such an operator K is said to be completely
continuous.t

Put Rn = K - Kn ; then we may write

L = I + K = I + En + &.
If we take e < 1 in (1.47), the bound of Rn is less than one, and therefore
Theorem 1.2 may be used to show that I + Rn has an inverse. Conse­
quently, since L is the sum of the invertible operator I + Rn and the
dyad Kn" we may use the methods given in this section to solve the equation
(l +K)x = a.

There is a simple condition which will ensure that an operator K can
be uniformly approximated by dyads. The condition is stated in the
following

Lemma. Let eh e2 ... be an D.N. basis for the space. If K is bounded,
and if

K is completely continuous.

To prove this lemma, note that every vector x may be represented as
follows:

where

I,'or any operator K, we have formally

Kx = Kel<eh x) + Ke2<e2' x) + ....
'I' The usual definition of a completely continuous operator K is as follows: If X n

IN n bounded set or vectors, then the set KXn has a convergent subsequence. It can be
Nhuwn thE\t the definition of the text is equi valent to this one.
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We show first that the series on the right-hand side converges if K is a
bounded operator. Consider the vector

Since K is bounded,
n n 1/2

IYmnl < Y!Le/ei, x)1 = Y L<ei, x)2

Since the series

l<ei' X)2
1

converges, we can find an integer rno such that for rn > rno, n > rno
n

2:<ei' X)2 < ely
m

for any e> 0; consequently, we have
--------------t1Jmn1 < 8

for all n > rno, m > mo. This proves that the infinite senes for Kx
converges.

We must still prove that the convergence is uniform. The above proof
does not do so because the value of nlo obviously depends on the vector
x. Of course, the reason for the non-uniformity is that so far we have
used only the fact that K is a bounded operator. We must now use the
hypothesis that

_----'(~1'----'.4~9)'--------------,~"--~1__2--=<----:ClJ=-----. _

1

Consider the vector
n C()

Kx - L:Kei<ei, x) = L:Kei<ei , x).
1 n+1

Using the triangle inequality and the Cauchy-Schwarz inequalities,t we
have

1/2 "

C()

--------.-t"'T"h-e--,.C.-a-uc----.h-y----.·S..-c-.-h-w-ar-z----.i-ne-q-u-a"Uto-y-s-.ta-.-te-s----.t"h-at;--.j""r-a-,l,----,"-i-n-rc-rc-c--c-.alr-nC-t-lm----,bc-:ce-::-rsc-,"'thLCe=---nI~aibiI
1

:::;; (Z'a~ • Xb~)1/2. This is the content of Problem 1.2.
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from (1.48). However, the convergence of the series in (1.49) implies that,
given 8 > 0, there exists an integer mo, independent of x, such that for
n>mo

(~IKeiI2)1/2___________---' Ke. 2 __<----=----8--'-; _

n+1

therefore, we have
n

--------IKx ZKei<ei' x>1 < efxi-·--------
1

This proves that K is uniformly approximated by the partial sums of the
series of dyads

Cfl

.
consequently, K is completely continuous? and the lemma is proved.

We may immediately apply this lemma to discuss the integral equation

(1.50) u(t) + 50,..--'-1k~(t,,+-, -'-'-.S)p<"u'¥'(s+-)""""ds'--------d-f-¥(t~),--------

where the functions u(t) andf(t) are assumed to belong to £2 over (0, 1).
The operator K is here an integral operator with the kernel k(s, t).

We assume a fact which will be proved later, namely, that the functions
exp (27Tint), n = 0, ± 1, ± 2, ..., form an O.N. basis for the space £2.
Then in this case the vectors Ken become

___________fof'l-'lk--'--('--t,'--'s=-J)'---'e=x'*'p---=2=7T'--'-ins'--=----=ds~, _

and we have

(1.51)
00 00

2:IKen 1
2 = 2: J: 1J~ k(t, s) exp 27Tins ds 1

2
dt

-00 -00

= f: dt2:fo
1

) k(t, s) exp 27Tins dsl2.
-00

Suppose we keep t fixed and consider k(t, s) as a function of s in 1:2 •

Equation (1.48) applied to this case gives

00

fo
1

Ik(t, s) 1
2 ds = 2: 1J: k(t, s) exp 27Tins ds 1

2
;

-00

consequently, (1.51) becomes
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, ,If now

f:Jo1Ik(t, S)j2 ds dt < 00,

the lemma states that the integral operator in (1.50) is completely continu-
ous; therefore, we may use the methods of this section to solve (1.50).
Of course, often this is more a theoretical than a practical help since a
sufficiently close approximation of the completely continuous operator
may require a dyad of a large number of terms, and this computation
would entail a prohibitive amount of algebra. I ,ater we shall find easier
methods for solving (1.50) in certain cases, but in most cases the methods
of this section must be used.

PROBLEMS

1.38. Solve

u"(t) + f: sin k(s - t)u(s) ds = let)

with the conditions u(O) = u'(O) = O.
1.39. Suppose that the operator K is diagonalized by the O.N. basis

eh e2, .. " that is, suppose Kei = Ai ei' Show that K is completely continuous
if the numbers Ai converge to zero. (Hint.

00 00 00

-------12:Xet<ei, X)12 - 2:l~<ei' X)2 < e2:<ei ' X)2
nil nil 1

since Ai converge to zero.)

1.40. Consider the integral operator Ku =f.l k(t - s)u(s) ds, where k(t) = t-P
-1

for 0 < t < 1, and 0 for 8;11 other values of t. Show that K is completely
continuous in :t 2 over ( 1, 1) if 0 < p < 1. (Hint. Introduce the basis exp
Trint and use Problem 1.39.)

1.41. Show that the sum of two completely continuous operators and the
product of a completely continuous operator by a bounded operator are com-
pletely continuous. FmaIIy, show that If kCt, s) is the kernel of an mtegral
operator K, and if k(t, s) = (t - s) Pk1(s, t) where 0 < p -< 1 and where

II f1 \k1(s, 01 2 ds dt < co, then K is completely continuous. (Hint. Use Prob­
-1 -1

lem 1.40. Write (t - s)-P = k(t - s) + k 2(t - s) and show k 2(t - s) is com-
pletely continuous.)

The Adjoint of an Operator

All the methods we have used for solving operator equations, except
that for the Neumann series, have been based on the assumption that the
equation has a solution. Before discussing under what conditions the
equation has a solution and under what conditions the solution is unique,
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we introduce a useful tool, the adjoint operator. A linear operator L*
is said to be the adjoint of L if, for all x and y in $,

(1.52) <y, Lx) = <L*y, x).

Because of the symmetry of the scalar product, it follows that L is also the
adjoint of L *, that is, (L*)* - L. TJsing (1.52), we see that

(LI + L 2)* = L! + L;, (LI L 2)* = L::L!.

If L* - L, then L is said to be self-adjoint. In that case,

(1.53)

We shall prove:

<y, Lx) - <Ly, x) - <x, Ly).

Theorem 1.3. Every bounded linear operator L has an adjoint.

Consider the scalar product <y, Lx), where y is a fixed vector and x an
arbitrary vector. Since L is bounded, the scalar product will be a bounded
linear functional of x and therefore, by Theorem 1.1, there exists a vector
w depending on y such that

(y, Lx) (w, x).

We now define an operator L * to be the correspondence between wand
y, and we write

(1.54) L*y = w.

It is easily seen that this correspondence is linear and that

<y, Lx) = <L*y, x),

and therefore that the operator, as defined by (1.54), is the adjoint of L.
This proof for the existence of an adjoint suggests the method by which

the adjoint of a given operator can be found. Form the scalar product
of y with Lx and then try to rewrite it as the scalar product of the vector
x with a vector depending on y. ConsIder, for example, an operator A
which is represented by the matrix in (1.25). Let y be a vector with
components r;h r;2, r;3; then the scalar product of y with Ax is

r;1(OCll~1 + OC12~2 + OCI3~3) + r;2(OC21~1 + OC22~2 + OC23~3)

= ~1(OCllr;1 + OC21r;2 + OC31r;3) + ~2(OCI2r;1 + OC22r;2 + OC32r;3)

+ ~3(oc13r;1 + OC23r;2 + OC33r;3)

(X, A*y),

where, clearly, AI/C is the transpose matrix of A, that is, the matrix with
the e]elnents IXi't in the lth row and the jth column.
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As another illustration of the adjoint, consider the operator defined in
(1.27). Let h(t) be an arbitrary function in £2; then

<h(t), Lf(t) = <h(t), get)~ = r dt h(t)J: K(t, s)f(s) ds.

If the order of integration is interchanged, this becomes

f: ds f(s)f: K(t, s)h(t) dt = <f(t), L*h(t),

_________L_*_h(~t)_J~BK(S, t)h(s) ds.

Note that the kernel of the adjoint integral operator is the transpose of the
kernel in (1.27).

As ·we have remarked before, the differential operator in (1 28) is un-
bounded so that the proof for the existence of an adjoint does not apply.
Nevertheless, by means of an integration by parts we can construct an
adjoint. For simplicity, we shall consider the differential operator, not
in $, but in the linear manifold :Jr[ of all functions f(t) in $ which have
second derivatives belonging to $ and are such that

f(rx) = f«(3) = O. Now

<h(t), Lf(t) = J: h(t)[~ + t2f(t)]i--d_t _

= [h(t)!'(t) - h'(t)f(t)]: + f: f(t) [~;: + t2h(l)] dt

------1': f(t) ~~2 + t2] h(t} dt = mt}, L*h(t})

if we assume that h(rx) = h«(3) = O. This shows that the differential
operator of (1.28) is self-adjoint in the manifold :Jr[.

PROBLEMS

1.42. Show that dd:: is self-adjoint in the manifold of functionsf(t) in .f 2 which
t "

have their 2nth derivatives in .e 2 and for which [(ri.) = [(fJ) = f'(ri.) = f'(fJ)

1.43. In 1: 2 over ( - 1, 1) find the adjoint of the reflection operator R which
is such that Rf(t) = f( - t).

1.44. Show that if L is bounded, then L* has the same bound. (Hint. Use
Problem 1.23 and the fact that (Lx, y) = (x, L*y).)

1.45. Prove that the operator defined by (1.54) is linear.
1.46. Prove that the adjoint of L defined by (1.31'> is
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1.47. In a complex vector space the adjoint is still defined by (1.52). Show
that the adjoint of an n rOlNed square matrix in En is the complex conjugate of
the transposed matrix.

1.48. In i!2- the space of all complex-valued functions such that the square of
theIr absolute values IS mtegrable, find the adJomt of the operators in (1.27) and
(1.28).

The Existence and Uniqueness of the Solution of Lx = a

There are two distinct parts to the question of solving the equation
Lx - a. First, does a solution exist and, second, is it unique? The
uniqueness of the solution depends upon the existence of a non-zero solu­
tion of the related homogeneous equation

(1.55) Lx - o.
The precise relationship is given by

Theorem 1.4. If the homogeneous equation (1.55) has a non-zero solu­
tion, the solution of the corresponding non-homogeneous equation is not
unique. Conversely, if the solution of the non homogeneous equation is not
unique, there exists a non-trivial solution at the homogeneous equation.

To prove this theorem, first suppose that Lxo = 0, where Xo "* 0; then
L(IXXo) = 0 for any IX. And, if LXI = a, then

thus Xl + IXXo also is a solution of Lx = a. Conversely, suppose that
;"L and X2 are two distinct solutions of Lx = a; then L(XI - X2) = a - a
.= 0, and thus Xl - X2 is a non-trivial solution of (1.55).

Notice that the proof that a solution, if it exists, is unique does not
guarantee its existence. A simple example will clarify this point. In
Eoo consider the Creation operator C defined on page 34.

Now Cx = 0 implies that X = 0; therefore, the solution of

Cx = a,

if it exists, is unique. Suppose that

a = .(1, 0, 0, ...);

it is clear, then, that there is no solution of the equation

ex - (1, 0, 0, . 00).

The existence of a solution of (1.55) will depend upon the existence of a
non-trivial solution of the adjoint homogeneous equation. We shall prove

Theorem 1.5. If the range ofL is closed, the non-homogeneous equation

(1.56) Lx = a
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has a solution for a given vector a if, and only if, a is orthogonal to every
solution of the adjoint homogeneous equation

(1.57) L*z = O.

From (1.56) and the definition of the adjoint, it follows that, for any x,

o= <x, L*z) = <a, z),

which proves that a must be orthogonal to every solution of (1.57). To
prove the converse, suppose that a were orthogonal to every solution of
(1.57), and yet there did not exist any x satisfying 0.56). Consider the
range of L, that is, the set of all vectors in cS which can be written as Lx.
The range is a linear manifold because if LXI = al and LX2 = a2, then
L(OCXl + (Jx2) - (XUl + PU2' By hypothesis, the range is closed and
therefore a subspace. If a does not belong to the range, the Projection
Theorem asserts that a has a projection ar on the range, such that

(1.58) z = a - ar

is orthogonal to the range; that is,

(1.59)

for all x. Since

for all x, it follows that

which implies that

<z, Lx) - 0

<z, Lx) = <L*z, x) = 0

<L*z, L*z) = 0,

L*z = o·,
hence z as defined in (1.58) is a solution of (1.57). Now, frDIn (1.58)
and (1.59) it follows that

<z, a) = <z, z + ar ) = <z, z) i= 0,

which contradicts the hypothesis that a is orthogonal to every solution of
(1.57). Therefore, a must be in the range, and a solution of (1.56) must
exist.

As an illustration of Theorems 1.4 and 1.5, consider the case where
L - I + al><b1• On page 30, we discussed the equation

and we found that this equation has a unique solution for every value of
a if 1 + <bh al) i= O. However, if 1 +<bh a1) = 0, this equation has a
solution and, in fact, an infinite number of solutions only if a satisfies
the condition that (bh a) = O. We shall show that these results are
exactly those that would be obtained by an application of Theorems 1.4
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and 1.5. Consider the homogeneous equation corresponding to (1.60),
namely,

x + al<bI, x> = o.
The only possible solution of this is when x is a multiple of €lJ:. Put
x (Xal; then we get

which implies that

We conclude that if 1 + (b}, al) does not equal zero, the homogeneous
equation has no solution other than the zero vector, and then the solu­
tion, if any, of (1.60) is unique. However, if 1 + <bh al> does equal
zero, the solution, if any, of (1.60) is not unique.

To decide whether a solution of (1.60) exists, we must consider the
adjoint homogeneous equation. The adjoint operator is I + bl><aI, and
the equation to be studied is

Z + bl<z, al> = O.

The only possible solution of this occurs when z is a multiple of bl . Put
z = fJbl ; then we get

fJbl + fJbl<bI, al> = 0,

which implies that again

1 + <hI, al) = O.

We conclude that, if 1 + <bh al> does not equal zero, the adjoint homo­
geneous equation has no solution other than the zero vector, and then
equation (1.60) always has a solution. However, if 1 + <hI, al) does
equal zero, then by Theorem 1.5, equation (1.60) has a solution if and
only if '

<bl, a> = O.

ThiS last statement assumes the fact that L has a closed range. We shall
prove this fact in the next section.

The operator L in (1.60) is one of the large class of operators which
have the following property:

Either equation (1.60) always has a unique solution or the corresponding
homogeneous equation has a non-trivial solution.

Such operators will be said to have the Fredholm alternative property.
Not all operators have this property. Consider, for example, the Creation
operator C that we defined on page 34. The equation ex = a does not
ulways have a solution, and yet the equation ex - 0 has only the trivial
fwlution x = o.
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An operator which has the Fredholm alternative property will be called
a Fredholm operator. For such an operator the uniqueness of a solution
implies the existence. If the range of L is closed and if the fact that
L*y = 0 has a non-trivial solution implies the existence of a non-trivial
solution of Lx = 0, then by Theorems 1.4 and 1.5 we see that L is a
Fredholm operator.

Note that in Theorem 1.5 the condition that the range be closed is
necessary for the validity of the theorem. For consider the following
operator in Eoo :

The operator G is bounded, linear, and self-adjoint, but its range is not
closed. The only solution of

G*x - Gx - 0

IS X = 0 so we might expect the equation

Gx =y

always to have a solution. However, if we take
11 - f1 .1 .1 •••\
::J \;:' 2' 3, ~h

we would get
x = (1, 1, 1, .. '),

which is not a vector in Boo since its length is not finite.
We use the term null space of L* for the subspace of all z such that

L*z = O. Theorem 1.5 may be formulated in terms of this concept as
follows:

The range of'L is always orthogonal to the null space vi L* . If L has a
closed range, the whole space is is the direct sum of the range ofL and the
null space ofL *,. in other words the range ofL is the orthogonal complement
of the null space ofL*.

PROBLEMS

1.49. Discuss these equations in Eoo :
(a) ex = y; (b) Dx = y; (c) Gx = y.

For what values of y does x exist? When is the solution unique?
1.50. Let x and a be vectors in E3 , and let L be a matrix such that the element

in the ith row and the jth column is /5i,j+1 + /5i,j-h where /5ij is the Kronecker
delta. Discuss the existence and solution of the equation Lx = a.

1.51. Suppose that L is an operato·r acting on En and that the dimension of the
range of L is less than n; then sho'v',' that there exists a non trivial solution of
Lx O. (Hint. If ell ell' .. " en is a basis for E"1 the vectors Lell Le'Jl . , ',Len
are linearly dependent.)
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1.52. Show that if there exists a non trivial solution of L*z 0 in En, there
exists a non trivial solution. of Lx 0; consequently, every operator in En is a
Fredholm operator. (Hint. Use the fact that <z, Ly) = 0 for all y in En and
Problem 1.51.)

1.53. An operator L that commutes with Its adjoint L*, that is LL* -- L*L,
is called a normal operator. Show that every normal operator is a Fredholm
operator. (Hmt. For any x, <Lx, Lx) - <x, L*Lx) -- <L*x, L*x); therefore
Lx = 0 implies L*x = 0.)

Operators with Closed Ran~e

In this section we shall show that most of the opel atOI s we have con-
sidered so far have a closed range; consequently, Theorems 1.4 an4 1.5
apply, and the questions of existence or uniqueness of the solution to the
operator equation can be decided. Our conclusions will be based on the
following theorem, which we prove in the Appendix to this chapter:

Theorem lA.II. If the linear operator V and its adjoint V* are operators
with closed ranges, then the operator V plus a dyad has a closed range.

We shaH use thIS theorem to prove

Theorem 1.6. If the linear operator L = I + K, where K is a com­
pletely continuous operator, then L has a closed range.

First, note that the operator I + M when M has a bound less than
one is an operator with a closed range. This follows from Theorem 1.3,
which shows that the inverse of I + M exists for every vector in the
space. Since the bound of M* is the same as that of M, it also follows
that I + M* has a closed range.

Now, because K is completely continuous, we may write K - Kn + Rm

where Kn is an n-term dyad and Rn is an operator with a bound less than
one. Then the operator V = I + Rn has a closed range and we have
L = V + Kn. Since V* also has a closed range, we conclude from an
n-fold repetition of Theorem lA.II that L has a closed range. This
proves Theorem 1.6.

We may apply Theorems 1.4, 1.5, and 1.6 to the di.scussion of the
~xistence and the uniqueness of the solutions of the integral equation

f1 fl

where

~
1

-------\-J(''-0-'.6'-'-'''-+)_______ k(t, s)2 dt ds < 00.
o 0

In the discussion of equation (1.50), it was shown that the integral
operator is cOJnpletcly continuous; consequently, by Theorem 1.6, the
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range of the operator on the left-hand side of (1.50) is closed. From
Theorems 1.4 and 1.5 we draw the following conclusions:

If (1.61) is satisfied, then (1.60) has a solution if and only if

-----------fo-1--f-,ff.f-t'os-k)vll-1(sH-)--..1d'-s~t-+O-----------

where v(s) is any solution of the equation

---------------'V"'-\'(.4'i')-++--S: k(t, s)v(t) dt - 0

The solution of (1.60) is unique if and only if there is no non-zero solution of
the equation

(1.62) u(t) +(...-1k=--(~t,~s)~u-'o;""(s-J-)=ds,--------=-O=---. _to
From Problem 1.55 we conclude that equation (1.60) always has a unique

solution if, and only if, (1.62) has only the zero solution.

PROBLEMS

1.54. If L - I + D where D is a k-term dyad, prove that L is a Fredholm
operator. (Hint. If a is in the range of D, then so is La. Suppose L*y - o.
Let ah a2, .. " ak be a basis for the range of D. If the vectors Lal' .. " Lak are
linearly independent, they also form a basis for the range of D. If y is ortho­
gonal to the range of D, then y = 0; therefore, if y =1= 0, the vectors Lal' .. " Lak
are not linearly independent.)

1.55. Prove that, if L V + D where V and V* have bounded imrerses or
if L = I + K where K is completely continuous, then L is a Fredholm operator.
(Hint. IfL = Y + D, then Y-lL = 1+ D' where D' is a dyad. Use Problem
1.54 and the method of proof in Theorem 1.6.)



APPENDIX I

THE PROJECTION THEOREM

The Projection Theorem states essentially that through any point outside
a subspace 3il there exists a perpendicular to :Ji[. More precisely, the
Projection Theorem states the following:

Theorem IA.I. If y is any vector not in a subspace :Jr[, there exists in
:Jr[ a vector w, called the projection ofy on :Jr[, such that y - w is orthogonal
to :Jr[; that is

<y - w, x) = 0
for every x in :M.

The vector y - w is the perpendicular mentioned above. Since in
Euclidean space the perpendicular is the shortest distance from a point to
a subspace, we shall prove that a vector such as w eXIsts by findIng the
minimum distance from y to the subspace ;:;n. Therefore, we consider
the values of

Iy - xl 2 = <y - x, y - x)

where x is any vector in c:JJt. We assume a real-type scalar product over
the field of real numbers; then, since y is not in :Ji[, the value of Iy - xI
is greater than zero.

Let ~ be the greatest lower bound of the set of values of Iy - xl 2 and
let Xn be a sequence of vectors in :Jr[ such that the limit of Iy Xn l2 is b.
We shall show that the sequence Xn converges. For arbitrary e > 0 we
may find no such that, for all n > no, we have

Iy - xn l 2 < ~ + e.

Suppose that m > no; then by Problem I.Sa

I(y - xn) + (y - Xm)12 + I(y - Xn) - (y - Xm)12

= 21y - xn l2 + 21y - xm l 2 < 4(~ + e),
or

Since:Jr[ is a space, the vector (xm + xn)/2 is in it if the vectors Xm and Xn
ure; consequently, by the definition of the greatest lower bound, we have
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Using this in (lA.I), we get
IXm - xn l

2 < 4e.

Since e was arbitrary, this proves that the sequence Xn of vectors in j)f
converges to a limit. Denote this limit by w. By hypothesis, :hE is a
subspace and consequently a closed manifold; therefore, w belongs to
j)f, and we have

(lA.2) b = Iy - W\2 < \y - xl 2

for all x in j)f. If x and w belong to j)f, so does the vector w + (Xx for
any value of cx. In (lA.2) replace x by w + (Xx. We get

or

(lA.3)

Put

o< (X21xj2 + 2(X(y - w, x).

(y - w, x)
(X = - Ix l2

and (lA.3) becomes the following:

(
y - w, X»2

0< - Ixl .
Tbis result impljes

(y lV, x) - 0,
which proves the theorem.



A PPENDIX II

OPERATOR OF CLOSED RANGE PLUS A DYAD

We shall prove

Theorem IA.II. If the linear operator V and its adjoint V* are operators
with closed ranges, the operator V plus a dyad has a closed range.

Put

(lA.4) L = V + a><b.
The statement that L is an operator with a closed range GO. means that if
there exists a sequence of elements Yn in rJR converging to a limit Y, then
Y is in~. Since Yn is in GJl, there exists an element Xn such that LXn = Yn­
What must be established is the existence of an element x such that
Lx = y. Note that x need not be the limit of the sequence Xn • In fact,
we shall give an example of an operator for which the sequence Xn does
not have a limit.

To prove Theorem IA.II, first assume that b is in the range of V*;
therefore, there exists an element b' such that

V*b' = b.
We may now write

(IA.5) LXn = VXn + a<b, xn> = VXn + a<b', Vxn> = Yn .

.Put VXn = tn' then from (lA.5) we have

(IA.6) tn I a(b', tn ) Yn .

Suppose that

(IA.7) I + <b', a> 1:= O.
Multiply (lA.6) byb' and solve for <b', tn). We get

<b' t >= <b', Yn>
'n I + <b',a>

and after substitution in (lA.6) we find that

a<b', Yr)

Since Yn converges to Y, the right-hand side of this equation must converge
to a limit t, and we have

a<b', y)
__( _IA_,8_) t__y_J.---'l+ <b', a) ,

.53



54 PRINCIPLES OF APPLIED MATHEMATICS

By definition In is in the range of V. We have just proved that tn converges
to t. Since by assumption the range of Vis closed, this means that there
exists an element x such that

a<b' y";

Multiply this equation by b' and solve for <b', y). We find

<b', y) = <b', Vx)[l + <b', a)].

Substituting this result in (lA.9) and simplifying, we get

y Vx + a<b', Vx) Vx + a<b, x) Lx,

which was to be proved.
If (lA.7) is not satisfied, then

(lA.l0) 1 +<h', a) - O.

Take the scalar product of (lA.6) with b', and using (lA.lO), we find
that

<b', Yn) = 0
and going to the lImIt

(lA.ll) <b', y) = O.

Consider the element a. Either a is in the range of Vor it is not. If
a is in the range of V, there exists an element a' such that

Va' - a

and then we may write (lA.5) as

V[xn + a'<b', Vxn)] = Yn'

This shows that Yn is in the range of V. Since by assumption the range of
V is closed, there exists an element x such that

Vx=y.

From (lA.ll) we conclude also that

<b', Vx) - 0;
therefore,

Vx + a<b, x) = Vx + a<b', Vx) = Y,

which was to be proved.
If a is not in the range of V, then from Theorem 1.5 it follows that there

must exist a solution c of the equation

V*c =0
such that

<C, a) #- O.
Put

b" = b' + c.
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1 + <b", a) - <c, a) * O.
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If we replace b' by b", we may repeat the proof given above for the case
where (lA.?) was satisfied and thus again establish the existence of an
element x such that

Lx -yo

Second, assume that b is not in the range of V*. Since the range of V*
is closed, then by Theorem 1.5 there exists a solution d of the equation

(lA.12)

such that

(lA.13)

Vd=O

<b, d) ~ O.

Again, consider the element a. Either it is in the range of V or it is not.
If a is not in the range of V, then, just as before, there exists a solution c
of the equation

(lA.l4)

such that

V*c =0

<c, a) 1= O.

Note that because of (lA.l4)

(lA.l5) <c, Vxn) = O.

The scalar product of (lr\.... 5) with c gives the result

Since Yn converges to a limit Y, this equation shows that <b, xn) converges
I

to a limit p. We have

VXn - Yn -=--- a<b, xn>-+Y - fJa.

By assumption the range of V is closed; therefore, there exists an element

x' such that

(l A.l6) Vx' y (Ja.

Let oc' be a scalar such that

(IA.I7) <b, x' - oc'd) = p.
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Put
x = x' - CI.'d·,

then because of (IA.l2), (IA.l6), and (lA.l7) we have

Vx + a<b, x) = y.

Finally, we consider the case in which a is in the range of V. As before,
we assume

Va' = a
and we write (lA.5) as

-------------v-V[Xn + a'<b, xn)]f--.--'lyl-J-n-.----------­

This shows that Yn is in the range of V. "Since the range of V is closed,
there exists an element x' such that

(lA.18)

Let CI. be the scalar such that

(lA.l9)

Put

<b, x' - Cl.d) = O.

x x' rxd;

then from (IA.l8) and (lA.l9) we see that

Vx + a<b, x) = y.

Thus, in all cases we have shown that Y IS in the range of L. This proves
Theorem IA.II.

We now construct the promised example of an operator for which
the sequence Xn does not converge. Let bb b2, ••• be an orthonormal
basis in cS and consider the opelatOI

Dx = a<bI, x).

Put

n = I 2 ..." ,

then
I

DXn = Yn = -- a.
n

The sequence Yn converges to zero, but the sequence Xn does not converge
and no subsequence of the Xn converges.



-----2~-----

SPECTRAL THEORY OF OPERATORS

Introduction

It was pointed out, in the previous chapter, that operator equations
could be solved easily if the operator could be diagonalized, that is, if we
could find a basis Bh BZ, • • . and its reciprocal basis fh fz, . . . such that
the operator L could be represented as follows:

L = Alel><fl + A2e2><f2 + .. "
where Ah A2' ... are scalars. As we have remarked before on pages 32
and 33, this representation implies that

(2.1) Lei = Aiei' i = 1, 2, ....

We call the vectors ei eigenvectors of L and the scalars Ai eigenvalues of L.
We shall say that the scalars Ai are in the spectrum of L.

We see then that in order to diagonalize an operator, we must use its
eigenvectors as a basis. In this chapter we shall discuss the eigenvectors
and eigenvalues of an operator. We shall find that for some operators
the eigenvectors do not span the space, and we shall discuss what can be
done in such cases to obtain a simple representation for the operator.
Finally, we shall apply thIS simple representation to solve various operator
equations.

Because of the difficulties encountered when dealing with operators
011 infinite dimensional spaces, most of our results will be for operators
on finite-dimensional spaces, that is, essentially for tuatrices4 However,
when no restrictions are stated in the theorem, the results will be true for
operators in general spaces.

Invariant Manifolds (Subspaces)

Equation (2.1) states that the one-dimensional space determined by the
eigenvector ei is invariant under L, that is, when L acts on any vector
in the space, the result is still in the space. We generalize this concept
of invariant vectors by considering invariant manifolds or invariant sub-
~\'Pa,·es.

57
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A manifold (subspace) 3r[ is called an invariant manifold (subspace) if,
whenever m is a vector in rfAf, then Lm is also in tJt[. We prove

Theorem 2.1. The whole space $, the space containing only' the zero
vector, the null space oiL, and the range oiL are invariant manifolds oiL.
If (f) is finite-dimensional, the dimension of the null space plus the dimension
of the range equals the dimension of$.

That the whole space, the space containing only the zero vector, and
the null space are invariant manifolds is clear from the definition of
invariant manifolds. Consider any vector r in the range. By the defini-
tion of the range, Lr is in the range, and consequently the range is also
an invariant manifold.

Suppose that n is the dimension of $, that v is the dimension of the null
space, and that p is the dimension ofL$, the range ofL. Let Xh X2, •• " Xv

be a basis for the null space. Complete this basis to a basis for $ by
adjoining the vectors Xv+h Xv+2, •• " xn- We shall show that the vectors
LXv+h •• " LXn form a basis for the range. First, consider any vector X
. eB w .

then
n

This shows that the vectors LXv+h •• " LXn span the range. Second, if

then

and the vector (Xv+lXv+l + ... + (XnXn would be in the null space. How-
ever, this contradicts the assumptions that the vectors Xh •• " Xv form a
basis for the null space and that Xh .. " Xn are linearly independent. The
contradiction shows that the vectors LXv+l, •• " LXn are linearly independ­
ent. Since they also span the range, they form a basis for the range.
Since the number of elements in a basis is invariant, we conclude that

p = n - v,

which proves the theorem.
We shall call a set of vectors x",..'" .. " Xm such that the vectors

LXv+b .. " LX,t form a basis for the range of L, a set of progenitors for the
range. The proof of Theorem 2.1 now implies the following
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Corollary. The finite-dimensional space $ is the direct sum of the null
space ofL and the space spanned by any set o/progenitors of the range ofL.

Incidentally, note that the space spanned by the set of progenitors is not
necessarily invariant under L.

Theorem 2.2. If 3rt is a finite-dimensional invariant subspace oj L, the
effect of L on 3r[ may be represented by a matrix.

In 3r[, choose a basis mb m2, ... mk' Consider Lmj (l < j < k).
Since :Jr[ is invariant under L, Lmj IS in :Jrt and may therefore be expressed
as a linear combination of the basis vectors. Put

k

(2.2) Lmj = 2:aijmi'
i 1

Let x be any arbitrary vector in:M with components ~b ~2' .• " ~k relative
to the basis mb ..., mk so that

x = ~1m1 + ~2m2 + ... + ~kmk'

Since Lx is also in 3rt, it can be expressed in terms of the basis m, , ..., mk'
Suppose that

y = Lx = 'YJ1m1 + ... + 'YJkmk'

From (2.2) we find that
k k k k k k

j=1 j=1 j=1 i=1 i=1 j=1
hence

k

(2.3) fJi - L\lij~j'
j=1

This shows that in 3rt, L can be represented by the k-rowed square matrix
A whose elements are \lij'

Suppose that the whole space $ itself has finite dimension n and that
/tl is a subspace of dimension k and is invariant under L; then we know
that $ can be expressed as the direct sum of c."Jr[ and a subspace J\{ whose
dimension is n - k. In general, J\{ will not be invariant under L. The
representation of L in $ will be given by

Theorem 2.3. /f3r[ is invariant underL and utA! is a subspace ofajinite-
dimensional space $, the operator L may be represented in ($ by the matrix

(A B)
-------------- 0 D "------------------

where A is the matrix of Theorem 2.2, B is a k by n - k matrix, and D
1.\' an (n - k)-rowed .yquare matrix.
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Let 11th ", I1tk be a basis for ~[, and nh n2, •. " nn k a basis for X
Since is is the direct sum of ~f and fJ{, every vector x in cS can be expressed
uniquely in terms of mi and nj' We write

x = (~),------__

where ft denotes the k components in the subspace 3r[ and v denotes the
n - k components in the subspace X

To find the representation of L we, assume

L (A B) krows
C D n - k rows

k columns n - k columns

where A, B, C, Dare submatrices of the matrix for L; then

Lx = (~ ~)(~) = (~~ :).
Suppose that x is in :Jr[ and hence v = 0; then Lx should also be in C!7Y[
since 3:Jt is invariant under L. This implies that eft = 0 for arbitrary ft,
and therefore C = O. This implies that Lx on 3f[ is just Aft. Hence, A
is the matrix described in Theorem 2.2. This proves Theorem 2.3.

Corollary. If:Jr[ and ;}{ are both invariant subspaces ofL and if cS is the
direct sum of:M and X, the effect oj L on ($ is represented by the diagonal
block matrix

L = (~ ~).
This follows from the fact that if x is in :K, Pi - 0; and since Lx is also

in:N, then Bv = 0 for all v.
In the case described in the corollary, L may be considered as the sum

of two operators, L 1 acting only on :Jr[ and L 2 acting only on:N. We put

so that

The most important invariant subspaces are those which are one-dimen­
sional; that is, :Jr[ contains only vectors of the form rxm, where m is a fixed
vector and rx an arbitrary scalar. By the definition of invariant subspace,
it roIlows that

(2.4) Lm ,...JAm
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where A is a scalar. The vector m is said to be a characteristic vector or
eigenvector of L, and Jc is a characteristic value or eigenvalue of L. Geo-
metrically, (2.4) means that, under the transformation L, vectors in the
m direction keep their direction fixed but have their lengths multiplied by
A Note that ,,5t[ is contained in the null space of L - AT, where T is the
identity operator. Every vector in the null space of L )./ is an eigen-
vector of L corresponding to the eigenvalue A. The dimension of the
null space will be called the multiplicity of the eigenvalue A.

We prove

Theorem 2.4. If:J!t is a finite-dimensional subspace mvariant under L,
there exists an eigenvector of L in M.

By Theorem 2.2., L acting in 3Y[ can be represented by a matrix A
relative to a fixed basis; hence if x is any vector in :JJt,

Lx =Ax.

Now for x to be an eigenvector, we must have
k

(2.5) (A - Al)x = L(OCij - A3ij)~j = O.
j=l

A necessary and sufficient condition for an eigenvector to exist is that
there should be a solution of (2.5) for which not all ~j are zero. Such a
solution will exist if and only if the determinant of the coefficients,
det locij Jc6ij I is zero. Since the determinant is a polynomial of the
kth degree in A, it will certainly have a zero, real or complex. For any
zero, there will exist a solution of (2.5) for which not all ~j are zero. The
vector with these scalars ~i as components will be an eigenvector.

As an illustration, suppose L is an operator that has the following
matrix representation in E 2 :

If the vector with components (fh fz) is an eigenvector of L, there exists
a real or complex number Asuch that

or

(2.6) (L - J.I>a;) = o.

Equation (2.6) implies the following set of linear equations:
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These equations have a non-trivial solution if and only if

(2.8) 1
3
~ A 3 ~ AI = O.

The roots of (2.8) are A - 1 and A - 5. Put A - 1 in (2.7) and we find
that the ratio of ~l to ~2 is - 2/1. Hence, any vector Xl with its compon-
ents proportional to - 2, 1 is then an eigenvector of L corresponding to
the eigenvalue A = 1. Similarly, when we put A = 5 in (2.7), the ratio of
~1 to ~2 is 2/1; thus, a vector XI! with components proportional to 2, 1
is an eigenvector of L corresponding to the eigenvalue it 5. Note
that the two vectors Xl and X2 are not orthogonal.

Since Xl and X2 are linearly independent, any vector X in £2 can be
written as follows:

where 'Y/l and 'Y/2 are scalars. From the linearity of L and the properties
of Xl and X2 it follows that

Lx = 'Y/lLxl + 'Y/zLx2 = 'Y/lXl + 5'Y/2X 2.

This result may be used to solve the equatIon

(2.9) Lx = a.

Write a = (XlXl + (X2X2 where (Xl and (X2 are known scalars; then (2.9)
becomes

and consequently

ThIs shows that the solutIon of (2.9) IS

. (X2X2
X = (XlXl + -5-'

We see then that there are two essentially different methods for solving
(2.9). One way is to find the inverse operator L -1. The other way is to
find the eigenvalues and eigenvectors of L and then to solve the equation,
using these. Both techniques will be important in later work.

PROBLEMS

2.1. Consider the linear vector space whose elements p(x, y, z) are homogen-
eous polynomials in x, y, z, and consider the permutation operator P such that

Pp(x, y, z) = p(y, x, z).

Show that the subspace of polynomials of a fixed degree is invariant under P.
What is the matrix representation of P in the subspace of polynomials of degree
one? What are the eigenvalues and eigenvectors of P in that subspace? (Hint.
The three polynomials x, y, and z form a basis for the subspace.)



SPECTRAL THEORY OF OPERATORS 63

2.2. Consider the operator P of the preceding problem in the subspace of
polynomials of degree two. Find the matrix that represents P, and determine
its eigenvalues and eigenvectors.

2.3. Let (x, y, z) represent the coordinates of a point in E 3• Consider the
operator defined by the following equations:

x' 2x + y + z,

y' = - 3x - y + 2z,

Z' = X - 3z.

Show that the subspace defined by x + y + z - 0 is invariant under this
operator. Find the representation of the operator in this subspace and find
the eigenvalues of the representation.

Commuting Operators

We digress for a moment from the problem of finding the eigenvectors
of an operator. Instead, we shall prove some theorems which will be
interesting in themselves and will enable us also to clarify the distinction
between an operator and its representation.

Two operators Land K are said to commute if LK = KL. We prove

Theorem 2.5.t IfL and K commute, then the range and null space o.lL
are invariant manifolds for K. Similarly, the range and null space of K are
invariant manifolds ofL.

To prove this, let x be in the .null space of L; that is, let Lx 0; then

0= KLx =LKx.

Consequently, Kx is in the null space of L, and therefore the null space of
L is invariant under K.

Suppose now that y is in the range of L; that is, there exists a vector z
such that Lz = y. Then

Ky = KLz = L(Kz);

consequently, Ky is in the range of L, and therefore the range of " is in-
variant under K. Similarly, we can prove that the range and null space
of K are invariant under L.

An important consequence of this .theorem is given by the following

Corollary. IlL and K commute and if one of the operators has an eigen-
value ()~.finite multiplicity, both operators have a common eigenvector; that
Is. there exists a vector x such that

Lx = AX, Kx = KX,

where At and K are scalars.

t This theorem contail1s the essential part of Schur's lemma. See Murnaghan,
n",ory of Group, Representations, Johns Hopkins Press, Baltimore, 1938.
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The proof depends on noticing that, since Ly ;'y implies
(L AI)y - 0, the eigenvectors of L corresponding to a given eigenvalue
A are elements of the null space for the operator L - AI. Now, if L
commutes with K, so will L - AI; consequently, by Theorem 2.5, the null
space of L - AT is invariant under K. Since by hypothesis this null space
is finite dimensional, Theorem 2.2 shows that K can be represented as a
matrix on this space. It follows from Theorem 2.4 that K has an eigen­
vector x in this null space; consequently, we have

Kx = KX and (L - AT)x - 0,

which proves the corollary.
We shall discuss some applications of this corollary to the theory of

differential equations. Consider the differential operator

acting on the linear manifold of twice-differentiable functions u(t) such
that u(l) = u( - 1) = O. Suppose that q(t) is an even function of t; then
if R is the operator such that

Ru(t) = u( - t),

we can show that Rand L commute. First, the manifold of functions
u(t), such that u(1) = u( - 1) = 0, is invariant under R; second,

-------"'R~(-L'l<IfI-Jt)~-'-'-iR[- u"(t) +q(t)u(t)] - - 'lL"(- t) +q(- t)u(- t)

and

L(Ru) = L[u(- t)] = - u"( - t) +q(t)u(- t).

Since by assumption q(t) - q( t), we have RL - LR.
The corollary tells us that Rand L must have common eigenvectors,

that is, there exist functions u(t) such that

Lu = AU and Ru = pu.

The eigenvalues of R may be readily found. From

Ru(t) = u( - t) = pu(t)
we get

R2u(t) = Ru( - t) = u(t) = pRu(t) = p2u(t).

This equation implies that p2 1, or, p - ± 1. The eigenfunctions
carresponding to p 1 are functions 'u(t) such that

Ru(t) = u( - t) = u(t),

that is, even functions of t, whereas the eigenfunctions corresponding to
p - - 1 are functions v(t) such that

Rv(t) = v( - t) = - vet),



SPECTRAL THEORY OF OPERATORS 65

that is, odd functions of t. 'Ve conclude then that the eigenfunctions of
L may be separated into either even or odd functions of t.

As a final application, consider the differential operator

d2

acting on the linear manifolds of functions u(t) which are twice-differen­
tiable from - 00 to 00. Suppose that q(t) is periodic with period h, that is,
q(t + h) q(t) for all t. 'Ve shall define a translation operator T as the
operator such that

Tu(t) - u(t + h),

and we shall prove that T commutes with L.
We have

TLu(t) , T[ - u"(t) + q(t)u(t)] = - u"(t + h) + q(t + h)u(t + h)

and LTu(t) = L[u(t + h)] = - u"(t + h) + q(t)u(t + h).

Since by assumption q(t) has period h, we see that

TL -LT.

From Theorem 2.5 the null space of L is Invariant under 1', that is, the
space of all functions u(t) which are solutions of the equation

(2.10) - u"(t) + q(t)u(t) = 0

is invariant under T. This means that if u(t) is a solution of (2.10), then
so is u(t + h). From the theory of linear differential equations we know
that there exist two fundamental solutions Ul(t) and U2(t) of equation
(2.10) such that any solution u(t) of (2.10) is expressible as a linear com­
bination, that is,

u(t) = (lUl(t) + fJU2(t),

where (l and fJ are scalars; consequently, the null space of L is two­
dimensional.

By Theorem 2.2 the action of T on this null space can be represented by
a 2 x 2 matrix. To obtain this matrix we may proceed as follows.

Since Ul(t + h) is a solution of (2.10), we may write

Ul(t + h) = (lllUl(t) + (l21U2(t).
Similarly, we have

If we put

we get
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'tVe see then that

The matrix

(
(Xu (X12)------------------J'A'f---""'=- -------------
(X2I (X22

is the representation of the operator T acting on the two-dimensional
space of solutions of (2.10). Note that the operator T is still a translation
operator and is not the matrix A but that its effect may be represented by
the matrix A. The matrix representation is not unique, for if we use two
other fundamental solutions of (2.10) instead of UI(t) and U2(t) we shall
represent T by a n:ratrix different fronI A.

Later, we sha111nvesttgate the relatIonship between the different matnces
that may represent the same operator. At present, we note that by
Theorem 2.4 every matrix has at least one eigenvector. In general, a
two-dimensional matrix such as A will have two eigenvectors. Suppose
the components of these two eigenvectors are (CXb (31) and (CX2' (32), corres-
ponding to the eigenvalues Al and A2' respectively. Each eigenvector will
define an eigenfunction of T as follows:

vl(t) = (XIUI(t) + fJIU2(t),

We shall have

Vl(t + h) = TVI(t) = AIVI(t), V2(t + h) = TV2(t) = A2V2(t).

Put

PI = h 1 log Ab

then

or
e-p!Ct+h)VI(t + h) = e-P1t VI(t).

This shows that the function WI(t) = e-P1t vl(t) is a periodic function of t
with a period h A similar result holds for the function W2(t) = e-Pat v2(t),
""here P2 h-I log ).2' Therefore, we conclude that equation (2.10) has
two linearly independent solutions VI(t), V2(t) such that

where WI(t) and W2(t) are periodic functions of t with period h.t
t This Iesult is known as Floquet's theorem. See Inee, Ordinary Differentl'al

Equations, pp. 381-384, Dover, New York, 1944.
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If we now introduce Vl(t) and V2(t) as a basis for the space of solutions
u(t) of (2.10), we see that we get

From these considerations it is easy to discuss the possibility of finding
solutions of (2.10) which have the period h. Clearly, VI (t) will be such
a periodic function if Al = 1. Similarly, the possibility of finding solu-
tions of (2.10) which have a period that is any multiple of h may be
discussed.

PROBLEMS

2.4. If Th is the translation operator through a distance h, show that, for all
values of h, Th commutes with any differential operator with constant
coefficients.

2.5 If Re is the operator which rotates E2(~' 1]) through an angle f), show that
8 2 8 2

it commutes with the Laplacian 8~2 + 8"f}2'

2.6. Suppose that £1 and £2 are operators which have no common invariant
manifolds except the zero vector and the whole space. If K is an operator
which commutes with both L1 and L 2, prove that either K maps every element
onto zero or K has a unique inverse. (Hint. By Theorem 2.5 the range and
null space of K are invariant manifolds of both L 1 and L 2.)

eigenvector of K corresponding to the eigenvalue )., then L]x is an eigenvector
of K corresponding to the eigenvalue A-I, and L 2x is an eigenvector of K
corresponding to the eigenvalue A+ 1. (Hint. We have L 1(L1L 2x) - L 1L",(L1x)

L 1$ and also L1£2(L2$) Lz{L1L 2$) L 2$.)

2.8. Use Problem 2.7 to find the eigenvalues and eigenfunctions of the

K d2 t
2

• h f . bl f .operator = - dt
2
+ 4: In t e space 0 square Integra e unctIOns over - co

t d t d

eigenfunction corresponding to the eigenvalue 1/2.)

Generalized Eigenvectors

The use of eigenvectors to solve the equation Lx = a is justified only if
the eigenvectors of L span the whole space. It is easy to give cases where
the eigenvectors of L do not span the whole space. For example, let L
be represented by the following matrix in E 3 :

(
1 1 2)

__________------"L=------' ~ ~ ~ '-"--. _
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''Ie have det 1£ 1.11 (I. 1)2(/. 2); hence A 1 and I. 2. For
Je - 1, the equation (L Je)x - 0 becomes

~2 + 2~3 = 0,

3~3 0,

and these equations imply ~2 = ~3 = 0; therefore, the eigenvector Xl

corresponding to A = 1 has components proportional to 1, 0, O. For
A = 2, the equation (L - A)X = 0 becomes

- ~2 + 3~3 = 0,

0- 0,

and then ~2 = 3~3' ~l = 5~3; therefore, the eigenvector X3 corresponding
to A = 2 has components proportional to 5, 3, 1. These two eigenvectors
Xl and X3 obviously do not span the three-dimensional space. To be able
to span the space we use a vector X2 for which

but for which
(L - AI)2x2 = O.

It is easy to see that when A = lone such vector X2 has components pro-
portional to 0, 1, O. However, when A = 2, there is no such eigenvector.

A vector Xk' for which

(2.11)

but for which

(2.12) (L - AoI)kxk = 0,

will be called a generalized eigenvector or an eigenvector of rank k corres­
ponding to the eigenvalue Ao. Put

Since from (2.12)

(2.14) (L - AoI)jxj = (L - AoI)i(L - AoI)k jXk = (L - AoI)kxk = 0,

and from (2.11)

we see that Xj is a generalized eigenvector of rank j corresponding to the
eigenvalue Ao.
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Eigenvectors of different rank will be linearly independent. Suppose
that

then by (2.14)

But from (2.15) this result implies (f.,j = 0. Similarly, we can show that
(f.,j-h (f.,j-2, •• " (f.,l are all zero, and hence the vectors Xh •• " Xk are linearly
independent.

Consider the set :N' of all vectors x in CS for which there exists an integer
k such that

(2.16) (L - AoI)kx = 0.

We shall call this set :J{ the generalized null space of the operator L - ;0'
f){ is a linear subspace of $, for if XI and X2 belong to f}{ with exponents
k l and k 2 , respectively, then

(L - Ao)k«(f.,IXI + (f.,2X2) = 0,

where k is equal to the larger of kl and k 2•

If CS has the finite dimension n, the smallest integer k for which (2.16)
holds must be not greater than n. For, if this were not so, there would
exist a vector Xk such that

(L - Ao)k-IXk i= 0,

with k > n. Then consider the vectors Xh X2, •• " Xk' defined in (2.13).
We have shown that these k vectors are linearly independent. But a
space of dimension n has at most n linearly independent vectors; conse-
quently, k is not greater than n.

We see then that

(L - ~ \n,... - (L - ~ )n-k(L - A )k,... - 0nO' .... nO nO ....

for every x in :N.: We write this result as

(L - Ao)n;){ = 0,

and we say that the operator (L - Ao)n annihilates .,X There may exist
an integer m smaller than n such that (L ).o)m annihilates X The
smallest such integer will be called the index of the eigenvalue Ao. More
precisely, the integer m is the index of the eigenvalue Ao if

(2.17) 0; ).o)m:J{ 0;

but

(2.18)
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This last formula means that there exists a vector x in X such that

(L - AO)m-1X -=I- O.

The generalized null space :J{ is an invariant subspace of L, for if x
is in fK, then by (2.17) (L Ao)?nx - o. Consequently, Lx is also in f){
because

(L - Ao)mLx = L(L - Ao)mX = o.
By Theorem 2.2 the action of L on :J{can be represented by a matrix. In
the next section we shall obtain a simple representation for L by intro-
ducing an appropriate basis in X

PROBLEMS

2.9. In ErL) consider the "Destruction" operator D of Chapter 1 defined as
follows: Dx (~2' ~3' ...) if x - (~I' ~2' .. '). Show that the only eigenvector
corresponding to the eigenvalue zero is X'I (l, 0, 0, ...). Show also that zero
is an eigenvalue of infinite index. (Hint. Djxj = 0 when Xj is a vector all of
whose components are zero except the jth component.)

2.10. Consider the following operators in £4:

Find the eigenvectors and generalized eigenvectors of these operators. (Hint.
Show that L I has a generalized eigenvector of rank 4, L 2 has two generalized
eigenvectors of rank 2, La has one generalized eigenvector of rank 3, and L 4

has one generalized eigenvector of rank 2.)

2.11. Show that for a completely continuous operator K the generalized null
space correspondmg to a non-zero eIgenvalue lAO is finite-dimenSIOnal. (Hint.
Suppose that the generalized null space ;}{ has infinite dimension. Put
K = Kn + R where Kn is an n-term dyad and where the bound of R is e < A/2.
Let eh e2, ••• be linearly independent vectors in :J{ such that (K - A)em+1 is a
lmear combination of eh .. " em for all values of m. By using projections we
construct from these vectors the vectors gh g2' ... such that for all m the length
of gm is one, the distance between gm+1 and any linear combination of gh .. " gm
is not less than one, and (K - A)gm+1 is a linear combination of gh .. " gm.
Then for In > m', we have Kn(gm - g~) = ),(gm - hm) - R(gm _. g:n,), where
hm is a linear combination ofgh .. " gm-I' From the definition of the g-vectors,
this implies IKn(gm g:n,>! > A/2. Since the vectors Kngm belong to an
n-dimensional subspace, there exists a subsequence of the g-vectors such that
Kngm converges to a limit.)

Representation of an Operator in a Generalized Null Space

We wish to find a basis for tN, the generalized nu]] space of L - Ao a

such that the representation ill terms of this basis wi II be as simple as
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possible. In the preceding section we saw that all the elements of:J{ are
eigenvectors or generalized eigenvectors of L. \Ve saw also that repeated
applications of L - Ao to a generalized eigenvector of rank r generates a
chain of r generalized eigenvectors. The basis we want will be made up
of maximal chains of vectors, that is, chains which contain the largest
possible numbers of vectors.

A specific example will clarify the method. Consider the following
operator in £6:

L=

o 1 0 0

o 0 0 0

If we denote the column vector which has one in the jth row and zero in
the other rows by aj (j 1, 2, . . " 6), an arbitrary vector x in ~ will be
represented by

6

X = 2~jaj
1

and we find that

(2.19)

Lx = ~5aI + (~3 + ~4 - ~6)a2 + (~3 - ~6)a5'

L2x = (~3 - ~6)ah

L 3x - O.

The last equation shows that £6 is a generalized null space of index three
for the eigenvalue zero. We wish to simplify the representation of L by
finding a new basis in £6' Consider the effect of L2 on £6' From the
second equation in (2.19) we see that the null space f){2 or£2 is the space
of all vectors in E6 such that ~3 - ~6' and that the range of L2 is the space
spanned by al' By the corollary to Theorem 2.1, the space £6 will be
the direct sum of :J{2 and the space P2 of the progenitors of the range
of L2 As a progenitor of the range space we may take any vector x
such that L 2x al; for example, put x ag. The vector ag will be a
basis for P2 and also one vector in the new basis.

Now we shall find a basis for the null space :N2 of L2, that is, the space
of all vectors x in £6 such that ~3 = ~6' Consider the effect of L on ;}{2'
From the first equation in (2.19) we see that the range oiL on t}{2 is two-
dimensional (note ~:J ~6) and that it is spanned by the vectors at and
a2' N"ote that the llull space ofL acting on £6 is the same as the null space



72 PRINCIPLES OF APPLIED MATHEMATICS

ofL acting on fJ'o4. Again by the corollary to Theorem 2.1, this time applied
to ~ and the operator L, we see that ~ will be the direct sum of the
null space :J4 of L acting on ~ and the space PI of progenitors of the
range of L acting on :J(2. We try to find a basis for Pl. Since the vector
aa is already in P2' we consider the vector b2 = Laa. We have

b2 = Laa = a2+ as·

Since L 2b2 - 0, the vector b2 is in~ and since Lb2 - at, we see that b2 is
in Pl. To complete a basis for PI we may take any vector x in ~ such
that Lx - U2; for example, take x - U4. The vectors Ua, b2, and U4 will be
part of the new basis for E6•

The rest of the basis will be found by obtaining a basis for ~. The
space :J.4 is the set of vectors x such that

~5 = ~a + ~4 - ~6 = ~a - ~6 = o.
Consider the effect of LO, that is, the identity operator, on:.1'4. The
range of LO acting on J\G is exactly the three-dimensional space 314, and
the null space orE acting on~ is the zero vector. Vie shall have a basis
for £6 if we adjoin to the vectors we already have, namely, aa, b2, and a4,
a set of progenitors of the range of LO acting on~. To find these pro­
genitors, consider L acting on the basis for PI' that is, on b2 and a4• We
have

Lb2 = L(Laa) = al

La4 = a2•

Because b2 and ll.i are in 'W'2' the vectors Lb2 and Lll.i are in .'4 and can be
used as progenitors of the range ofLO acting on;}4. To get a complete set
of progenitors for this range, we take any vector x in~ which is indepen­
dent of b2 and La4; for example, take the vector x = aa - a6 •

To sum up, we have obtaIned a new basis for £6: Denote the vectors

bI = L2aa = aI'

b2 Laa a2 + as,

b4 = La4 = a2'

bs = a4,

Note that this basis contains a chain of length three, a chaial of length
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two, and a ehain of length one. In terms of this basis, we find the
following simple representation for L:

L=

100 0

o 1 0 0

We shall prove

Theorem 2.6. If:X is a generalized null space of index v for L, there
exists a basis for ,x such that in terms of this basis L has the following
representation:

where Cj (1 <j< m) is a square matrix of order OJ all of whose elements
are zero except that the elements in the diagonal above the main diagonal
are all one. The numbers OJ are independent of the basis chosen, and we
have

Vj be its dimension. We see that :N.~ contains only the zero vector and that
;Xv is the whole space. We prove the following lemma:

Lemma. The null space ofL 16 acting on :J{16+l is the null space :J(16.

The null space of L k acting on X 16+1 is the set of vectors x in X 16+1 such
that Lkx = o. From this it follows that x is in :J.I.~. Conversely, if x is
in :J(16' then

which shows that x is also in :J{k+l and therefore in the null space of L 16

acting on Xk+1• This proves the lemma and also the fact that :J{1c is
contained in 6V~+1'
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Let Gfk be the space of progenitors of the range of Lk acting on X k+h

that is, Gfk is the space spanned by the vectorspj (1 <j<Pk)' wherepj are
vectors in Xk+1 such that the vectors Lkpj are linearly independent. By
the corollary to Theorem 2.1 , we know that the space X k+1 is the direct
sum of the space .?fk and the space {;/\; consequently, the dimension of
GJ!-'k IS

We may write

Since X =:J.L~ and Xo = 0, by induction we can show that

:J.L' = Pp 1 fB Pp 2 ffi ... fB PI ffi Po.
The proof will be completed by finding a suitable basis for the spaces

Pk (0 < k < 'j) - 1). We start with a basis for Pv- I ' Then we show that
L acting on this basis will give a set of linearly independent vectors in
Pv-2' Complete this set to a basis in Pp - 2' We find that L acting on this
basis for Gfv- 2 will give a set of linearly independent vectors in 'fp - 3•

Complete this last set to a basis in 6]1p-3' and continue In the same way
until we have a basis for aU the Pk • The following lemma will justify this
procedure.

Lemma. If the vectors Pi (1 < j < Ple) form a basis for Pk , the vectors
Lpj (1 < j < Pk) are linearly independent vectors in Pk-I'

Note that this lemma implies that Pk-I > Pk'

From the definition of PTe we know that pj is in Xk+l and therefore Lpj
is in f)[k' Again, from the definition of Pb if

then

consequently, since a relation of the form

rt.ILjpI + ... + rt.pLjpp = 0, (p = Pk)

by multiplication with Lk-j implies

('J.ILkpI + .. :+ rt.~kpp = 0, (p = Pk),

it follows that the vectors LP1" . " Lpp are linearly independent and also
that the vectors Lkp1 ,' . " Lkpp are linearly independent. This proves first
that the vectors LPl" . " Lpp, (p = P1D) are linearly independent vectors and
second that they are part of IJfrc...1•
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The basis is now found by induction. Let Xj (1 <j< Pv-l) be a basis
for Pv- l . By the above lemma, the vectors Lxj are linearly independent
vectors in Pv- 2• To these vectors, we can adjoin vectors Xj
(Pv=1 < j < Pv-2) in Pv- 2 so that the set of vectors LXi (1 < j < Pv-l) and
Xj (p~ 1 < j < Prr-2) forms a basis for Til 2. Similarly, if Yj (l < j< Pk)
forms a basis for PTe' then, using the lemma above, 'Ne can find vectors
Yi (Pk < j < Pk-l) such that the set of vectors LYi (1 < j < Pk) and
Yi(Pk <j< Pk-l) forms a basis for PTe-I.

This process is continued until we have found a basis for Po. Com-
bining all the basis vectors, we obtain the following basis for :J{:

(2.20)

(1 <j< Pv-I)

(p~ 1 <.i< p~ 2)

To obtain the representation given in Theorem 2.6, we re-arrange the
vectors in (2.20) as follows:

Since Xl is a generalized eigenvector of rank v, we may put

Y - Lv-Ix Y - LV-2x ... Y - X .1 - h2 - h 'II - 1,

these vectors span a space invariant under L. The representation of L
on this space is exactly the matrix CI . Similarly, if Pv-l ~ 2, the vector X2

is a generalized eigenvector of rank v and we put

however, if Pv-I = 1, the vector X2 is a generalized eigenvector of rank
v-I, and we put

1,/, - TV-2~ 1,/, - Tv-3~ ••• 1'}, - ~.:n+l -~ W2, ~v12 -, W2, , ~2~ 1 - W2·

In either case, these vectors span a space invariant under L and the
representation of L on this space is the matrix C2 • Continuing in this
way, we obtain the representation given in Theorem 2.6. Note that

and that m ~= Po.

~j = v,
=v-l,

= 1,

CPu 1 < j < Pu 2),
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PROBLEM

2.12. Simplify the representation of the following operators by using the
appropriate basis:

Canonical Form of an Operator in a Finite-Dimensional Space

Suppose that A is an eigenvalue of index m for the operator L. The
set of vectors in cS which can he written as (L - AI)mx will he called the
generalized range of L for the eigenvalue J.. It is clear that the general-
ized range is a subspace. Vie prove

Theorem 2.7. The space cS is the direct sum of the generalized range
and the generalized null space for any eigenvalue Ao ofL.

I,et x be any vector in $. Consider the vectors (L - loT)mx ,
(L - AoI)2mx, (L - AoI)3mx , .. '. Since cS has dimension n, the first
n + 1 of these vectors must he linearly dependent; that is, there exist
scalars (xo, (XI, • • " (Xn such that

If 0(0 i= 0, then

x = - (L - Ao)mr~ x +... + ~(L - Ao)(n-l)mx];
~cxo OCo f-------

hence x would be in the generalized range. If (Xo = (Xl = ... = (Xk-l = °
but (Xk i= 0, then

(2.21) (Xk(L - k)km(x - y) = 0,

where
- (XkY = (Xk+I(L - Ao)mX + ... + (XnCL - AO) (n-k) mx.

The vector Y is clearly in the generalized range. Since m is the index of
Ao, equation (2.21) implies that

Ifwe write

(2.22)

(L - loT)m(x - y) - o.

x = Y + (x - Y),

x has been expressed as the sum of a vector in the generalized range and
a vector In the generalized null space for Ito.
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The representation (2.22) is unique, for suppose that

77

x = YI + Zl = Y2 + Z2

when YI and Y2 are in the generalized range and Zl and Z2 are in the
generalized null space. By subtraction we have

which shows that the vector w is in both the generalized range and in the
generalized null space. This is impossible unless w is the zero vector
because, if w is in the generalized range, then

for some Xl; and, if w is in the generalized null space, then

Since m is the index of Ao, the last relation implies that

(L - Ao)mX1 = w = 0;

consequently, both Yl = Y2 and ZI = Z2. This proves the uniqueness
of the representation in (2.22) and completes the proof of Theorem 2.7.

Theorem 2.1 can easily be extended to show that the generalized range
and the generalized null space are invariant subspaces ofL. The corollary
of Theorem 2.3 shows that L may be represented as follows:

L = (~ ~).

Here A represents the effect of L on the generalized null space, and D
represents the effect of L on the generalized range. In the preceding
section, we have shown that A can be reduced to a simple form with non­
zero elements only on the main diagonal and the diagonal above it. We
now proceed to simplify D.

The·matrix D represents the effect ofL on an invariant subspace, namely,
the generalized range. By Theorem 2.4, L has an eigenvalue Al in this
subspace. Determine the generalized null space and generalized range
of L for the eigenvalue A'I' The direct sum of these invariant subspaces
will be the generalized range for Au. Consequently, D can be reduced to
the following form:

___________D__(:' ~J-,----------
where Al represents the effect of D on the generalized null space for Al
and D1 represents the effect of D on the generalized range for AI.
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It is clear that this process may be continued with D1. Eventually, we
find that

1

. 0

. Aj 1

where Aj represents the effect of L on the generalized null space for the
eigenvalue Aj. The previous section shows that A j can be represented as
follows:

The representatIon (2.23) with blocks for each eigenvalue appearing as
in (2.24) is called the Jordan canonical form of a matrix.

The preceding discussion has proved

Theorem 2.8. If a suitable basis is used, every operator on a finite-
dimensional space may be represented by a matrix in the Jordan canonical
form.

We shall illustrate the above proof by finding the Jordan canonical
form of the following matrix:

- 1 1 1 0

3 - 1 - 1 0

We find that det IL ).11 O. - 4) riO. -- 2); therefore, 4 is an eigen­
value of multiplicity five and 2 is an eigenvalue of multiplicity one. Let
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us now determine the generalized null space of L 4/. The successive
powers of L 4/ are as follows:

L-4/=

o -4

o 4

o
o

o
o

o
o

o
o

o
o

o
o

It is easy to see that (L - 4/)4, (L - 41)5, and still higher powers ofL - 4/
will look like (L - 4/)3 except for different numbers in the two-rowed
square matrix in the lower-rfght-hand corner; therefore, any vector that
is annihilated by some power of L - 41 will be annihilated by (L - 41)3.
This shows that 4 is an eigenvalue of index three.

To determine the generalized null space, consider (L - 4/)3x, where x
is an arbitrary vector with components ~h ~2' •• " ~6' For convenience,
we shall write the column vectors as row vectors. We have

therefore, the null space of (L - 4/)3 is defined by the relation ~5 = ~6'

Since the whole space is six-dimensional and since the null space of
(L - 4/)3 is defined by only one relation, it follows that this null space is
five-dimensional. We reduce L to canonical form by finding a suitable
basis in this null space.
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As in the proof of Theorem 2.6, we consider the generalized null space
of (L 4/)0, (L 41)1, and (L 4/)2. We have

(L - 4/)2X = (2~s + 2~4' 2~s + 2~4' 0, 0, 2~5 - 2~6' - 2~5 + 2~6).

We shall denote the generalized null space of (L - 4/)k (l < k < 3) by

The space :J{g is defined by ~5 - ~6. Using the equation above for
(L - 4/)2X, we see that the effect of (L - 4/)2 on any vector x in :J{s is
as follows:

- 2(~s + ~4)(1, 1, 0, 0, 0, 0).

The range of this operator is clearly one-dimensional. As a progenitor
we may take the vector

Xl = (0, 0, I, 0, 0, 0).

The space :J{2 is defined by the relations

~5 = ~6 and ~s = - ~4.

Using the equation for (L 4I)x, we see that the effect of (L 41) on
any vector X in 9(2 is as follows:

(L - 4/)x = (~l - ~2' ~l - ~2' 2~5, - 2~5' 0, 0)

= (~l - ~2) (1, 1, 0, 0, 0, 0) + 2~5(0, 0, 1, - 1, 0, 0).

This range is two-dimensional. As one progenitor we take the vector

X2 = (L - 4/)XI = (1, - 1, 0, 0, 0, 0).

As another progenitor, we take the vector

Xs = (0, 0, 0, 0, 1, 1).

The space :J{l is defined by the relations

~l - ~2 + ~s + ~4 = 0,

~1 ~2 ~3 ~4 - 0,

~5 + ~6 = 0,

~5 - ~6 = 0.
These relations imply

~5 ~6 0,
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consequently, the effect of (L 4/)0' I on any vector x in :Xl is as
follows:

Ix = (~h ~h ~3' - ~3' 0, 0)

~I(l, 1, 0, 0, 0, 0) I ~g(O, 0, 1,

Again, the range is two-dimensional. Since the vectors

X4 = (L - 4/)X2 = 2(1, 1, 0, 0, 0, 0)
and

Xs = (L - 4I)x3 = 2(0, 0, 1, - 1, 0, 0)

1, 0, 0).

are progenitors of the range, we are finished. The vectors Xh X2, Xg,

X4, X5 form a basis of :J{3' We arrange them as follows:

If we adjoin to these vectors the vector Y6 which is the eigenvector for the
eigenvalue A = 2, then in terms of this basis L takes the following form:

L=
0 0 4 1

0 0 0 4

0 0 0 0

PROBLEM

2.13. Express the following matrices in the Jordan canonical form:

(a)

8 -2 -2 0

0 6 2 -4
(b)

-2 0 8 -2
2 -4 0 6

Similarity Transformations

Consider the operator L acting on the finite-dimensional space 3. If
we introduce a set of basis vectors ei (1 < i < n), the operator will be
represented by a matrix (A) with elements Aij (1 < i, j < n). If we use a
different set of basis vectors ei, the operator L will be represented by a
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different matrix (it') with elements it'ij' The matrix (it') is said to be
similar to the matrix (A). We shall derive a relationship connecting the
two matrices.

Consider first the unprimed basis ej' Since any vector x in cS may be
written as

(2.25)

where the ~ i are scalars, we have
n

(2.26)

This shows that to find the matrix representation for L we need to express
the vectors Lej in terms of the basis ei' Put

(2.27)
n

Lej = L>ijei, (j = 1, 2, .. " n),
i=l

where the Aij are scalars; then, substituting in (2.26), we get

(2.28)

This equation shows that the components of Lx relative to the e i basis are
obtained from the components of x in the same basis by multiplying them
with the matrix (A) whose elements are Aij'

By using the basis reciprocal to ei' we shall obtain an explicit expression
for Ail' Denote the vectors of this reciprocal basis by Ii (1 < i < n).
From the properties of the reciprocal basis (Chapter 1), we have

(2.29)
n

1= Lei)<li,
1

where 1 is the identity operator. Since
n

X = Ix = Lei<li' x),
1

we see by comparison with (2.25) that the components of x in the ei basis
are given by the formula

(2.30) ~i = <Ii, x), (i = 1,2, .. " n).

From (2.27) it follows that the scalars Aii are the components of the
vectors Lei; therefore, by (2.30) we get
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Vie state this result as a
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Lemma. Relative to the ei basis, the operator L is represented by a
matrix (A) whose elements are

Another way to obtain the matrix for L is as follows:

The components of Lx relative to the ei basis are given by <Ii' Lx).
By using (2.29), we have

therefore,
n

which is equivalent to (2.28).
Suppose that we now consider the primed basis e~ and its corresponding

reciprocal basis I:. The operator L will be represented in terms of this
basis by the matrix (A') with elements

A~j = <I;, Lej).

We shall find the relationship between A~i and Aii by expressing the vectors
of the primed bases in terms of the vectors of the unprimed bases. Using
(2.29), we get

n

ej) = lei) = 2~ek<lk' ej),
k=l

and
n

</~ = </~l = L</~, em)<1m·
m=l

Substituting these results in the expression for A~j, we find that
n n

A~j = L L<I; ,em )<Im, Lek)<lk, ej);
m=l k=l

or, if we put (0') for the matrix with elements

and (-u) for the matrix with elements
/ ( ',-qJ '\Jk' ep,

we find the following relation between matrices:

(A') = (a)(A)(r).
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This expression can be simplified because we shall show that the matrices
(0") and (T) are the inverse of each other. Consider the matrix product
(a)(t) whose elements are given by

n

k 1

by the use of (2.29). Since thef; are the vectors of the basis reciprocal to
the e~ basis, we have

therefore,
(a)(r) = I,

the identity matrix, and
(a) - (1')-1.

Using this result, we obtain the following relationship between similar
matrices:

(A') = (r)-l(A)(r).

Since
n n

e'.) = ~e .)< I'! e'.) = ~r . ·e .)) ~ '/, J'/,,) ~ '/,) '/, ,
i=l i=l

we see that (T) is the matrix which expresses the primed basis e~ in terms
of the unprimed basis ei'

The above discussion has proved the following

Lemma. If (A') and (A) are similar matrices, that is, if they are matrix
representations of the same operator, there exists a matrix (t') such that

(2.31) (A') = (r)-l(A)(r).

We shall call the transformation by which (A) becomes (A') a similarity
transformation.

Suppose that, instead of an operator, we are given an n X n matrix
(Il), with elements Ilij' This matrix may be used to define an operator
M in En' Introduce a basis ej (1 S j < n), where ej is the column vector
which has one as its jth component and zero for all the other components.
We put

n

(2.32)

and if

Me)' = LIJ.' ,e,'j"t) 'l.'

i=l
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The operator M so defined is clearly a linear operator on the finite-dimen-
sional space En. Theorem 2.8 states that, if a suitable basis is used, then
M may be represented by a matrix (p/) in the Jordan canonical form; conse­
quently, from (2.31) there exists a matrix (r) such that

(p') = (r)-l(p)(r).

This shows that an arbitrary matrix is always similar to a matrix in the
Jordan canonical form. We state this result as

Theorem 2.9. Every matrix may be transformed into the Jordan
canonical form by means af a similarity transformation.

. It is readily seen that the Jordan canonical form for an operator is
unique except for the order of arrangement of the eigenvalues; it follows
that two matrices are similar if and only if their Jordan canonical forms
are the same except for the order of arrangement of the eigenvalues. This
implies that the two matrices must have the same eigenvalues with the
same multiplicity and with the same number of generalized eigenvectors.

Right and Left Eigenvectors of a Matrix

The discussion of the preceding section has shown that an arbitrary
matrix (p) can be transformed into the Jordan canonical form by a
similarity transformation with matrix (r). This matrix (r) was the matrix
which expressed the eigenvectors and generalized eigenvectors of M in
terms of the original basis ei (loS i oS n). Let XI be an eigenvector of l"{
corresponding to the eigenvalue AI; then

MXI = AIXI'
Put

from (2.32) and (2.33) we get

Z:eiZ:Pij~j = AIZ:~iei
j i

or
~Pij~j = AI~i'

This result shows that the column vector whose components are ~ j will
be an eigenvector of the matrix (p) corresponding to the eigenvalue AI'
Similar results will hold for all the eigenvectors and generalized eigenvectors
of M. When expressed in terms of the ei basis, they will be eigenvectors
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and generalized eigenvectors of the matrix (P). We see then that ('r)
will be the matrix whose columns are the vectors and generalized eigen-
vectors of the matrix (ft).

An example will clarify the situation. Consider the six-dimensional
matrix whose generalized eigenvectors were found in the illustrative
example (page 78). We have

5 -1 1 1 0 0
1 '1 1 1 {\ {\
.L J .L .L V V

0 0 4 0 1 1
\PJ-

4 -1
.

0 0 0 -1

0 0 0 0 3 1
0 0 0 0 1 1, ,

The generalized eigenvectors corresponding to the eigenvalue 4 are as
follows:

12 1 1 , I 0 , I 0' J 0 ,
? -1 0 (\ (\

0 0 1 2 0
Yl =

0
Y2 =

0
Ys =

0
Y4 =

-2
Y5 =

0
~ ~

u u u u 1

, 0 , o ~ , 0 j \ 0 ~ , 1 I

There is also one eigenvector corresponding to the eigenvalue 2:
1 {\ \

v ,

0

0
Y6 = •

0
1...

-1

If we form the matrix with these vectors as columns, we have

2 1 0 0 0 0'

" 1 n {\ {\ {\- ... .... .... v v

0 0 1 2 0 0
('r) =

(\ (\ (\ ., I) I)- ~ ~

u u u U 1 1

,0 0 0 0 1 - 1 ,
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Inverting this matrix, we get

87

We let ei' (1 < i < 6), represent the column vector all of whose com-
ponents are zero except the ith component which is one, and similarly we
let Ii' (1 < i < 6), represent the row vector all of whose components are
zero except the ith 'vvhich is one. Then we may write

(t') = Yl><J~ + . . . + Y6></6
and

(r)-1 = el><ul + ... + e6><u6'
where Uh ... , U6 are the row vectors of the matrix (t')-1. Note that

It is easy to check that

(2.34)

100 0

4 1 0 0

004 1

000 4

o 0 000

= (P'),

the Jordan canonical form. We have

, (p,') = el>«4/1 +12) + e2>«4/2 +13) + 4e3></3
+ e4>«4/4 +15) + 4e5 ></5 + 2e6></6'

If we rewrite (2.34) as (,u)(T) - (T)(,u') we get

(ft)Yl></l + ... + (ft)Y6></6 = Yl>«4/1 +12) + ... + 2Y6><f6'

From this result we have the following equations which show again that
'!II, Y2, Ys, Y4, Y5, Y6 are generalized eigenvectors:

(2.35)

(ft)Y2 = Yl + 4Y2'

(P)Y3 = Y2 + 4Y3,

(p,)y4 = 4y4,
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Suppose now that we rewrite (2.34) as follows ~

Then we find that

This implies that

U3(P) - 4U3,

UiJl) = 4u4 + U5,

U5(P) - 4u5,

These equations are very similar to the equations in (2.35) for the eigen­
vectors and generalized eigenvectors of (p). We shall say that the vectors
ll'b •• " U 6 are left eigenvectors or left generalized eigenvectors of the matrix
(P). The vectors Yh .. " Y6 we considered previously are called right
eigenvectors and right generalized eigenvectors of (P).

Notice that the vectors UI, •• " U6 are the right eigenvectors or right
generalized eigenvectors of the matrix (Ill), with elements Iljj, where

T

vectors of (p) corresponding to the eigenvalues AI, A2' . . " Am respectively.
We suppose that the vectors ei, .. " e~ are so chosen that the matrix (p)
becomes the Jordan canonical form. Then we have

(2.36)

where (Xj = 0 if ej is an eigenvector of rank one, but (Xj = 1 if ,ej is a
generalized eigenvector of rank greater than one. Let f{, f~, .. " f~ be
the basis reciprocal to e;, e~, .. " e~; therefore

(2.37) <f~, ej) - dkj , (1 < k, j < n).

Multiplying (2.36) by <f~, we get

(2.38) (f~, (pJej> - "j(fic, ej> + r:J.j(.fic, ej 1>.
t The transpose of a matrix is the matrix with its rows and columns interchanged.

We note that the transpose of the matrix product (It)(A) is (A'l')(,u'1').
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ofor all values ofj and k, we see from (2.37) that

(2.39a)

and

(2.39b) rJ.j<f~, e}-l) - rJ.j<f~+b ej) - rJ.k+l<f~+b ej).

Note that if k = n, we have

<f~, ej-l> = 0

for 1 < j< n; therefore, we may put rJ.n+l = 0 and f~+l =f;. Using
(2 39a) and (2.39b) in (2.38), we get

<f~, (ft)ej> - Ak<f~, ej> + rJ.k+]<f~+b ej>.

Since this equation holds for every value of j, we may multiply it by <f;
and sum the resulting equations from j - 1 to j - n. In this way we
find

since, by definition,
~ej><f; = I.

Equation (2.40) shows thatf~ is either a left eigenvector or a left general-
ized eigenvector of (ft), according as rJ.k+1 = 0 or rJ.k+I = 1. In the
preceding section, we have shown that (7:), the matrix which transforms (ft)
into its canonical form, had the vectors e~, ..., e~ as its columns; conse-
quently,

(7:) - e~><fl + ... + e~><Jn.

We also showed in the previous section that

(T)-l = el><f{ + ... + en><f~;

consequently, the rows of (r)-l are the vectors f~, .. ·,f~. We have thus
proved

Theorem 2.10. Let (ft) be an arbitrary matrix with e~, ..., e~ as its
right eigenvectors and right generalized eigenvectors. Let (x) be the
lIIatrix whose columns are the vectors e~, ..., e~; then ("Z)-l(,u)(t) is a
matrix in the Jordan canonical form and the rows of ('r)-l are left eigen­
vectors or left generalized eigenveptors of (ft).

PROBLEMS

2.14. Find the left and right eigenvectors and generalized eigenvectors of the
Illlllrices in Problem 2.13.

2.15. Suppose that (A) and (IJ-) are matrices which commute with each other,
thut is, suppose that (A)(P,) (,u)(A). Show that there exists a matrix (T) such
that both (7,) L(A)(t) alld (t) l(,u)('t) are in the Jordan canonical form.

1.16. If B is a Jordan canonical matrix, shOw that B commutes WIth B* if
und only if B is a diagonnl matrix.
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Eigenvalues of the Adjoint Operator

The statements in the preceding section about the left eigenvectors of a
matrix (p) can be interpreted to give results about the eigenvectors of the
transposed matrix (#T). From (2.40) 'Ne get

This shows that, according as iXj+l = °or iXj+l = 1, the vector f; is an
eigenvector or generalized eigenvector of (P) corresponding to the eigen-
value Aj.

If L is an arbitrary linear operator represented by a finite-dimensional
matrix (p), the adjoint operator L * will be represented by the transposed
matrix (pT). Prom Theorem 2.10 we conclude that every eigenvalue of
L is an eigenvalue at L* and to every chain at length k for L there corres-
ponds a chain of the same length k for L* .

Similar statements are not true for arbitrary operators In general
spaces. We shall give two examples to show that an operator may have
Aas an eigenvalue but its adjoint does not have Aas an eigenvalue. The
first example is one we have already considered in another connection in
Chapter 1. If x (~h ~2' . . .) is any vector in EOC), we have defined
Dx = (~2' ~3' .. '). The operator D has the adjoint C where CX = (0, ~h
~2' •..). Zero is an eigenvalue of D but is not an eigenvalue of C.

In the second example, define the operator F as follows:

then it is readily seen that

F*x = (0, ~1 + ~2' ~2 + ~3' ~3 + ~4' •••).

The vector e = (1, 0, 0, ...) is an eigenvector of F corresponding to the
eigenvalue zero. The operator F*, on the other hand, does not have
zero as an eigenvalue; for the equation F*x = °implies that

~1 + ~2 = 0, ~2 + ~3 = 0, ~3 + ~4 = 0, ....

By solving these equations recursively, we have

but clearly the vector

has infinite length; consequently, there is no vector x such that F*x - 0,
and zero is not an eigenvalue of F*.

However, if we restrict the class of operators suitably, we shall get
results similar to those we have already obtained for matrices. In the
appendix to this chapter, we shall prove

Theorem 2.11. Let A be an eigenvalue olfinite index for the operator
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L and let both L J. and L * J. have closed ranges,. then A is an eigen-
value afL* also. lv/oreover, to any chain a/length kJDr L, namely, vectors
eh e2, ..., ek such that

ej - (L - l)j-l£1:, (j - 1, 2, ..., k),

there corresponds a chain of length k for L*, namely, vectors Ib 12, . . ., fk
such that

and such that
<jj, ei> ~ij, (i, j 1, 2, ..., k).

The examples we discussed prior to stating Theorem 2.11 show that
the conditions of the theorem are necessary for its validity. In the first
example, zero was an eigenvalue of infinite index \¥hereas, in the second
example, the range of F was not closed. To see that the range of F is not
closed, put FXn - an, where Xn is the vector whose first 2n components are
alternatively + 1 and - 1, the next. n components are given by the
formula

,( j - 2n)
______~_j_<_-_1_)3 1 -"' n' 2n + 1 s: j s: 3n,

and the remaining components are zero. We find that an is the vector
whose first component is one and the rest zero except for those between
the 2nth and 3nth places, which are alternately lin and - 1In. It is
clear that the sequence an converges to a limit vector a, namely, the vector
whose first component is one and all the rest zero. However, the equation
Fx = a has no solution. This proves that the range of F is not closed.

PROBLEMS
2.17. If a complex-type scalar product is used and the conditions of Theorem

2.11 are satisfied, show that, when ). is an eigenvalue of L, then ;., the complex
conjugate of A, is an eigenvalue of L*.

2.18. If tio1k(S, tJ2 as at < 00 and Llf(s)2 as < 00, show that the integral

equation

u(s) + 'A fo1k(S, t)u(t) dt = f(s)

hus a unique solution belonging to .e 2 if, and only if, the homogeneous equation

-------------4JUff-(Sfi)r--o+~A£lk(s,t}u(t) dt 0

hus 'only the trivial solution u(s) = O. (Hint. The integral operator is com­
p.letely continuous. Use Theorem 2.11 and Problem 2.11.)

Characteristic Equation of a Matrix

In previous sections we have seen that the eigenvalues of a matrix A
mllst be zeroes of the polynomial c(A) = det IA - All. Conversely, every
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zero of the polynomial e(A) will be an eigenvalue of A. The equation
c(A) - 0 is called the characteristic equation of A. We shall prove the
following

Theorem 2.12. If B is a matrix similar to A, the characteristic equation
vlB is the same as the characteristic equation of A, namely, c(A) o.

If B is similar to A, there exists a non-singular matrix P such that
B = P-IAP. Obviously,

B - AI = P-l(A - ADP.

Using the well-known theorem that the determinant of a product of
matrices is the product of the determinants of the matrices, we find that

------dl-He~t--hIBB---Ikl-lII det p-l. det IA )./1 det P.
Since

det p-l . det P = 1,

we conclude that

det IB - All = det IA - All = c(A),

which proves the theorem.
By Theorem 2.9 the similarity transformation can be so chosen that B

is in the Jordan canonical form. The characteristic equation for amatrix
in the Jordan canonical fOI)11 is clearly

where AI, ..., Ak are the eigenvalues of the matrix, and nh ..., nk are the
dimensions of the generalized null spaces corresponding to the eigen­
valu~s )·h . . ., )·k·

If Aj is an eigenvalue of index mj, by (2.13) the generalized null space for
the eigenvalue Aj contains a chain of mj linearly independent vectors.
This implies that nj' the dimension of the generalized null space, is not
less than mj. We state this result as follows:

The multiplicity oj Aj as a root of the characteristic equation is not less
than the index of Aj as an eigenvalue of A.

We shall use this result to prove

Theorem 2.13.* Every matrix d satisfies its characteristic equation, that
is, the matrix e(A) is identically zero.

Consider any generalized eigenvector y corresponding to the eigenvalue
)'j. Since y belongs to the generalized null space of A Ai' we have

t This result is known as the Cayley-Hamilton theorem.
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Since nj > mj' \ve conclude that

and that
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In the proof of the existence of the Jordan canonical form, we showed
that the eigenvectors and generalized eigenvectors of A formed a basis for
the space. From (2.41), we see that the matrix c(A) applied to any basis
vector gives zero; consequently, c(A) applied to any vector in the space
gives zero. This implies that c(A) must be identically zero.

As an illustration of Theorem 2.1 3, consider the matrix

_______L _,~ ;)_. _

The characteristic equation is
,

C(A) = 3 - A
1 3

Now

4
= A2 - 6A + 5 = o.

-A

and we see that

------IL~2---=-h.6Lf------c±+=--'5..-+I~il~ 24U 18 24~5 OUO O}_. _
~ \J 13L--=-!- (i 18~O 5~O 0-

PROBLEMS

2.19. Show that (I- - 4)2(1- - 2) = 0 is the characteristic equation for both
the matrices

(
6 2- 2) ( 6

A= -~ ~ ~ andB=-~

2

2

o
Show that A2 - 6A + 81 = (A - 41)(A - 21) = 0 but that B2 - 6B + 81
/: O. Compute that (B - 41)2(B - 21) = o.

2.20. Show that the matrix A in Problem 2.19 has two linearly independent
cigenvectors corresponding to I- = 4, but that the matrix B does not have two
linearly independent eigenvectors corresponding to I- = 4; instead B has a
klcneralized eigenvector of rank two. This is the reason that A satisfies a poly-
nomial equation of lower degree than its characteristic equation.

2.21. The trace of a matrix is the sum of the elements on the main diagonal.
Show that the trace of the matrix representing an operator L in terms of the

n

busts "',., ..., en is.2:<./j, Lej), wherefI' . ·,,kis the basis reciprocal to eI, .., en.

Show that if A and B are arbitrary matrices, then tr(AB) = tr(BA).
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2.22. Show that if t'vvo matrices are similar, their traces are equal and their
determinants are equal; therefore, from the Jordan canonical form it follows
that the trace of a matrix is the sum of its eigenvalues and the determinant is the
product of its eigenvalues.

2.23. By actual computation, show that for the matrix in Problem 2.19

1'4 3 - 281'4 - 481

Compare this result with the remainder when A3 is divided by A2
- 6A + 8.

Self-adjoint Operators

In the section Scalar Product in Abstract Spaces in Chapter 1, we stated
that we shall use a real-type scalar product but that our vector space will
be taken over the field of complex numbers. It was also stated that this
may cause difficulty with the concept of the length of a vector because
the scalar product of a vector with itself might be negative or even com-
plex. However, it is clear that vectors in En all of whose components
are real have real non-negative lengths. Now, we shall generalize to
arbitrary spaces the concept of a vector with all real components.

Suppose that our space has n linearly independent vectors, each such
that the scalar product of the vector with itself is not zero. By using a
slight modification of the Schmidt orthogonalization process, we can
prove the existence of an O.N. basis B composed of vectors Xh •• " xn .

If
x = ~lXl + ... + ~nxm

we shall call the scalars ~1' ••• , ~n the components of x relative to B.
We say the vector x is the complex conjugate vector to x relative to B if

- -
where ~h .• " ~n are the complex conjugate scalars to ~h .. " ~n' We
have

ocx - oc x,

x +y - x +y,
<x, x) = 1~112 + ... + l~nl2 > 0

unless x -0, in which case <x, x) = O.
A vector x such that x - if is said to be a real vector relative to B.

Note that the vector x + x is a real vector and that the scalar product of
a real vector with itself is always non-negative.

The concepts of real and complex-conjugate vectors depend upon the
a.N. basis. If we start with a different O.N. basis B' containing the
vectors Yh .. " Yn and if we have

x = 171'Yl +···+ 'YJn'Yn'
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then the vector complex conjugate to x relative to B' '"vill be the vector

"/lYl + .. .+ 'YJnJJn'

In general this vector will not be equal to the vector x that we have defined
before. Therefore, the results that we shall obtain will be relative to the
fixed a.N. basIs with which we start. Usually, we shall take for our
fixed basis in En the vectors ej, (l <j < n), where the components of
ej are zero except for the jth component which is one.

An opelatol L is said to be a real operator if

[,U - ,iii,

where the bar indicates the complex conjugate vector. If L is self-adjoint
and real, the theory of its canonical form becomes much simpler. We
first prove

Theorem 2.14. If L is a real self-adjoint operator, its eigenvalues are
real and it has no eigenvectors of rank larger than one.

Suppose that A is an eigenvalue of Land u the corresponding eigen-
vector such that

Lu = AU.

If we take the complex conjugate of this equation and use the fact that
L is real, we have

Lu =Lu = AU;

consequently, r is an eigenvalue of L corresponding to the eigenvector u.
Now, since L is self-adjoint,

~ - - ~ - /'L:" -j- "f -
,.~u, u) ~u, ,JU) ~u, Lu) ,,:CU, u) ~,.u, u) b~U, u).

This result implies that either <ii, u) = 0 or A = A. The first alternative
is impossible because u i= 0; ther~fore, A = A, which means that A is real.
Suppose that u is not real; then, as we have shown above,

Lu =J:u = AU.

Thus the real vector u + u will be an eigenvector since

L(u + it) = A(U + u).

Consequently, if A is real, the eigenvectors corresponding to it can be
chosen to be real.

Suppose now that v is a generalized eigenvector of rank two corres­
ponding to the eigenvalue A. We may assume v to be a real vector; if it
is 110t real, then, just as before, we use v + v. Because L is self-adjoint,
we have

o= <v, (L - AI)2v) = «L - AI)v, (L - AI)v) = l(L - AI)vI2.
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Since (L A,l)v is a real vector, this equation implies that

(L - AI)v = 0;

therefore, v is an ordinary eigenvector of rank one.
If L had an eigenvector w of rank higher than two, then by applying

L - AI to w a sufficient number of times we would obtain an eigenvector
of rank two. The previous argument has shown this to be impossible;
therefore, there are no generalized eigenvectors for L. This completes
the proof of the theorem.

If we go back to the proof of Theorem 2.6, we see that, if there are no
generalized eigenvectors, then 'V = I and all (5 j = I. ThIs implIes that
the Jordan canonical form for such a matrix is a diagonal matrix, that
is, a matrix whose only non-zero elements are on the main diagonal.

An immediate consequence of Theorem 2.14 is that the Jordan canonical
form for a real self-adjoint rnatl ix is a diagonal rnatrix. The elements on
the diagonal are just the eigenvalues of L.

Another important fact about self-adjoint operators is given by

Theorem 2.15. IfL is self-adjoint, the eigenvectors ofL which correspond
to different eigenvalues are orthogonal.

Let A and fh be distinct eigenvalues of L, and let U and v be the corres­
ponding eigenvectors; then, since L is self-adjoint,

A('U, v) (Au, v) (bu, v) ('u, Lv) (u, p:v) p('u, v).

This result implies that

(A - fh)(u, v) = o.
Since A. -=1= ,I/" we must have (u, v) - 0; this proves the theorem

A slightly different arrangement of the proof of this theorem is worth
noting. We have

Lu = AU, Lv = fhv.

Form the scalar product of the first equation with v, the scalar product of
the second with u, then subtract the second result from the first. We
have

(v, Lu) - (u, Lv) = (A - y)(u, v).

Since L is self-adjoint, the left side is zero and the conclusion follows as
before.

PROBLEMS

2.24. Pro'le that if L is self adjoint '.vith a complex-type scalar product, the
eigenvalues of L are real numbers. (Hint. Consider ).('u, 1) and proceed as in
Theorem 2.14.)
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2.25. Prove that if L is self-adjoint with a complex-type scalar product, it has
no eigenvectors of rank greater than one and its eigenvectors corresponding to
different eigenvalues are orthogonal.

2.26. Prove that a symmetric matrix with real elements is self-adjoint. Show
that the symmetric matrix--------je a,-----------
has an eigenvector of rank two. Compare this result with Theorem 2.14.
Note that the eigenvector is orthogonal to itself.

2.27. Find the eigenvalues and the eigenvectors of the following matrix:

7 -3 -1 1

-3 7 1 - 1

-1 1 7 -3
.

\ 1 -1 -'l il

Verify the fact that the eigenvectors corresponding to different eigenvalues are
orthogonal.

Orthogonal Matrices

From the results of the preceding section and from Theorem 2.9, it
follows that a self-adjoint matrix can be reduced to a diagonal matrix by
means of a similarity transformation; that is, if L is a self-adjoint matrix
and P is a matrix whose columns are the eigenvectors of L, then

P-ILP = D,

where D is a diagonal matrix. We shall now show that as a consequence
of Theorem 2.15, we may take P-l = P* (p* being the matrix transpose or
adjoint to P).

Let Uh U2, • • " un be the eigenvectors of L. If Ui and Uj correspond
to different eigenvalues, by Theorem 2.15 we have

<ui ' Uj) = o.
Suppose that two or more eigenvectors correspond to the same eigen-
value; for example, suppose that Uh U2, •• " Uk correspond to the eigen­
value l; then any vector in the space spanned by Uh .• " Uk will be an
eigenvector corresponding to the eigenvalue. l because,

By the Schmidt orthogonalization process we may set up an orthonormal
bl\sis in this space. Denote these basis vectors again by Uh •• " Uk' Do
t he same in all cases where there are multiple eigenvectors for one eigen-
value. Consequently, we have
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even if,lt i and Uj belong to the same eigenvalue Notice that we can always
normalize the eigenvectors; that is, \ve can find a constant Ci such that the
length of CiUi is one. If we assume this done and use Yi to represent the
normalized eigenvector, we have finally

We state this result as

Theorem 2.16. The eigenvectors of a real self-adjoint operator form
an orthonormal basis Jor the space.

As an illustration of this theorem, consider the matrix in Problem 2.27.
Its eigenvalues are 12, 8, 4, and 4. The corresponding eigenvectors are
Ul = (1, - 1, - 1, 1), U2 = (1, - 1, 1, - 1), u~ = (1, 1, 1, 1), and
'lt4 - (1, 1, 0, 0). Any linear combination of the last two vectors is also
an eigenvector corresponding to the eigenvalue 4. 'lIe find that 'Us 'U4

is orthogonal to U4' We take Uh U2, U4, and Ua - U4 as a set of orthogonal
eigenvectors. Normalize these vectors and we have an O.N. basis:

YI tUh Y2 i U2' Y3 (H1I2U4' Y4 H)1I2(ua u4)'

Consider now the matrix P whose columns are the vectors Yh Y2, Ya, Y4;
that is,

P= - i i 0 (i)!
i - i 0 (l)!

Note that P*, which is the transpose of P, is the matrix whose rows are
the eigenvectors Yh Y2' Ya, Y4; that is,

(i) (i)

i -i -! !
n* t -i t -t

.L

(l)! (i)l 0 0
.

0 0 ! !

Clearly, p*p I, the identity matrix. We shall show in general that
this is just a consequence of the fact that the vectors Yh Y2, Ys, Y4 form an
O.N. basis.

Suppose that Yh Y2, .. " Yn are the O.N. eigenvectors for the real
self-adjoint operator L. Consider the matrix P whose columns are the
eigenvectors of L; we may write
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The adjoint p* will then have the eigenvectors of L as its rows; we may
write

p* = fl)<Yl + ... + fn)<Yn'

Now the product p*P will be

(2.43) p*p - fl><el + ... +fn><en - I,

the identity matrix because <Yi' Yj) = bij.
A matrix P which satisfies equation (2.43) is called an orthogonal

matrix. Since P is the matrix which transfonned L into a diagonal nratrix,
we have proved

Theorem 2.17. A real self-adjoint matrix can be transformed into a
diagonal matrix by an orthogonal transformation.

The importance of the orthogonal transformations lies in the fact that
they leave scalar products invariant. Consider two vectors u, 'I.! and an
orthogonal transformation P which transforms them into u' and v',
respectively, so that

u' = Pu v' = Pv', ,
then by (2.43)

<u', v') = <Pu, Pv) = <u, P*Pv) = <u, v).

Geometrically, the orthogonal transformations correspond to a rotation of
the coordinate axes around the origin.

PROBLEMS

2.28. Prove that the rows or columns of an orthogonal matrix form an O.N.
basis.

2.29. Find the most general form for a two-dimensional orthogonal matrix.
Compare it with the matrix for a rotation of the coordinate axes.

2.30. Prove that the determinant of an orthogonal transformation is ± 1.
Show that the orthogonal transformation in Theorem 2.17 can be chosen so that
its determinant is plus one.

Unitary and Hermitian Matrices

In the discussion of the preceding sections, we have always used a real-
type scalar product. For many applications, especially in quantum
mechanics, it is necessary to consIder a complex-type scalar product. In
this section we shall point out how the previous theorems must be
modified to cover such cases.

The main difference in the statements of the theorems arises from the
fact that the scalar product is no longer symmetric, but instead we have

<U~ v) = <v~ u),
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where the bar indicates the complex conjugate. Consequently, A*, the
adjoint of the matrix A, is not the transpose of A but is the transpose of
A with all elements replaced by their complex conjugates. A self-adjoint
matrix H is a matrix which is equal to the complex conjugate of its trans-
pose; for example,

Such a matrix is said to be a Hermitian matrix.
As shown in Problems 2.24 and 2.25, a Hermitian matrix has real eigen-

values only and eigenvectors of rank one only. Consequently, when a
Hermitian matrix is transformed by a similarity transformation to the
Jordan canonical form, the result will be a diagonal matrix with real
elements. We shall show that for a Hermitian matrix the similarity
transformation may be replaced by a unitary transformation, that is, a
transformation with matrix U such that the transpose of the complex
conjugate of U is the inverse of U. Such a matrix is called a unitary
matrix.

First, it is easy to see that for a Hermitian matrix H, eigenvectors
corresponding to different eigenvalues are orthogonal. Just as in the
real case, this follows from the self-adjointness of the Hermitian matrix.
Second, if there are different eigenvectors corresponding to the same
eigenvalue, they can be orthogonalized in the same manner as before.
Finally, we see that the eigenvectors of H will form an O.N. basis for the
space.

Let 1/,;, j - 1, 2, .. " n, be the 0 N eigenvectors of H, and let Ube the
matrix whose columns are the eigenvectors Uj' The adjoint of U will have
the complex conjugate of the vectors u j as its rows. Since the vectors
Uj form an a.N. basis,

<u. 2/., .\ - d· .

Because of the complex scalar product, this formula shows that the com­
plex conjugate of the transpose of U is the inverse of U. Therefore, U
is unitary, and we have proved

Theorem 2.18. A Hermitian matrix can be transformed by a unitary
transformatIOn mto a dIagonal matYlX with real elements.

Note also that a unitary matrix leaves the scalar product invariant.
The proof is the same as that for an orthogonal matrix.

The results of this and the preceding sections are listed in the following
summary:
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(a) The types of scalar products are

Real scalar product I Complex scalar product

(b) A self-adjoint matrix is called

101

Symmetric Hermitian
-----------------

(c) It can be transformed into a diagonal form v/ith real elements on
the diagonal by means of a transformation which leaves the scalar product
unchanged. Such a transformation is called

Orthogonal _----'U~n.L>.it...ar"--;iy~ _

(d) The transformation has the property that its inverse is equal to its
adjoint; that is, the inverse of the matrix of the transformation equals its

Transpose. Complex conjugate transpose.

Quadratic Forms

If we use a real-type scalar product, a quadratic form may be considered
abstractly as (x, Ax), where A is any self-adjoint matrix. For example, if
the quadratic form is

4~~ + 4~~ + 2~~ - 4~1~2 + 4~1~3 + 4~2~3'

the matrix A is

--------------i(~~+--------fr-~---'-}-BI--· ---------
Note that since the coefficients of the cross terms such as ~1~3 and ~2~3

appear twice in the matrix, they are taken at half their value in the quad-
ratic form.

By Theorem 2.17 we know that A can be transformed into diagonal
fonn by means of an orthogonal transformation. If we use the technique
or the preceding section, we may show that the orthogonal transformation
is represented by the matrix

(

2-1/2 .1

_________P__ - 2-1
/
2 i

o - 2-1/ 2

1

: )2-
1

/
2

_.----------

Lel liS now introduce the change of variables defined by this matrix P.
We put
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Since P is an orthogonal matrix, the change from the (~h ~2' ~3) coordinates
to the (1/h 1/2, 1]3) coordinates will be the result of a rotation of the co-
ordinate axes. After substituting these expressions for ~h ~2' ~3' we find
that the quadratic form becomes

It is interesting to note the geometrical interpretation of this result.
Consider the following equation obtained by setting the original quadratic
form equal to a constant:

This equation represents a second-degree surface in three-dimensional
Euclidean space which is so oriented that its principal axes are oblique
to the coordinate axes. After a suitable rotation of the coordinate axes,
the surface is represented by the equation

61J~ + 2(1 - 21/2)1J~ + 2(1 + 21/2)1J~ = c;

now the surface is so oriented that its principal axes are the coordinate
axes.

The fact that we can thus rotate the coordinate axes so that the principal
axes of a second-degree surface in n dimensions become the coordinate
axes turns out to be very important and has many applications. Note
also that, as a result of this rotation, a quadratic form in n variables is
written as the sum or difference of squares. We shall show that the
method illustrated above in the case of three dimensions is applicable to
any number of dimensions. This will prove the following

Theorem 2.19. A real quadratic form can be transformed by means of
an orthogonal transformation into a form having only square terms.

To prove this, let

a·· =a··~1 1~'

i-I j-I

n n

Q = L LaijCiCj ,

be the quadratic form whose matrix A has the real elements aij' Note
that A is symmetrical and is therefore self-adjoint. Suppose that P is
the orthogonal matrix which diagonalizes A so that

P*AP = D,

'vVhere D is a diagonal matrix "",,'hose diagonal elements )'h )'2' .. " An are
the eigenvalues of A. Let z be the vector whose components are Ch
C2' .. " Cn; then we may write

n n
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Now introduce a nevI set of variables 'fJr, 'fJ2, .. " 'fJn by means of the
transfornration P, that is, put

z =Py,

where y is a vector with components ?l" ?l2, .. " ?In' Under this trans-
formation, the quadratic form becomes

n

Q = <Py, APy) = <y, p*APy) = <y, Dy) = ~Ak'fJ:,
k=l

'.\Thich has only square terms. Thus the theorem is proved.
There are several points about the proof which are worth noticing.

First, since P is an orthogonal matrix,

Ci + ... + C; = <z, z) = <Py, Py) = <y, p*Py) = <y, y),

'fJ i I ... I 'fJ;.

'I his shows that although we have reduced the quadratIc form Q into a
linear combination of squares, the quadratic form that is a sum of squares
has been left invariant. Second, when Q is so reduced the coefficients are
exactly the eigenvalues of the matrix of the quadratic form. Third, since
D is purely a diagonal matrix, the value of the determinant of D is
A1A2 ... An' From the definition of D we have

det D = det p* . det A· det P,

but since p*P = I, det p* det P = 1; consequently,

det D = detA.
This proves that
(2.44) det A = A1A2 ••• An'
or, expressed verbally, the determinant of a matrix is equal to the product
of its eigenvalues.

If we use a complex-type scalar product, the expression <x, Ax), where
A is self-adjoint, is called a Hermitian form or a Hermitian quadratic form.
For example, suppose that

(
5 2i\

------------£;J.4~""___j _ 2i 2 J~;------------

then the Hermitian form is 5~1~1 + 2i~1~2 - 2i~2~1 + 2~2~2' By Theorem
2.18 we know that A can be transformed into a diagonal form by means
of a unitary transformation. Since the eigenvalues of A are 6 and 1, and
the normalized eigenvectors are (- 5 172 i, 2 ·5 172) and (2 ·5 172 i, 5 172),

the unitary transformation is given by the matrix
- i 2i

TT
v

2 1
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No'vv let us introduce a transformation with matrix U:

~l = - i'fj15-1/2 + 2i'fj25- 1/2,

~2 = 2'fj15-1/ 2 + 'fj25- 1/2.

We find that the Hermitian form reduces to 'fjl'fjl + 6 'fj2'fj2'
A similar procedure can be applied when A is a Hermitian matrix in n

dimensions, with elements aij, where aij = clji' The corresponding
Hermitian form is

n n

'/,-1' 3-1

By a unitary transformation, A becomes a diagonal matrix where the
diagonal elements are the necessarily real eigenvalues of A; we will then
have

n

H = L>kl'fjll.
k=l

The proof is similar to that of Theorem 2.19. We state the result in the
following

Theorem 2.20. A Hermitian form may be transformed by means of a
unitary transformation into a form containing only squares ofabsolute values.

PROBLEMS

2.31. Find the orthogonal matrix that will reduce the quadratic form
4(~~ + ~: + ~; + ~:) - 2(~1 + ~2)(~3 - ~4) to a linear combination of square
terms only.

2.32. Find the unitary matrix that will reduce the Hermitian form
-----A44-111~2 + 12j~2el 12i~le2 + 34tt2i 2 to a form without ClOSS terms.

2.33. A real quadratic form <x, Ax) is calledposjtive-definite if and only if the
value of <x, Ax) is greater than zero, except when x = O. Prove that <x, Ax) is
positive-definite if and only if the eigenvalues of A are all greater than zero.
(Hmt. If X o is an eigenvector of A, then <xo, Axo>= Ji<xo, xo>.)

2.34. If A is positive-definite, put <x, Ay) = <x, y\. Show that <x, y)l
satisfies all the axioms for a scalar product. Use the Schwarz inequality for
<x, Y)l to prove

(x, Ay)2 < (x, Ax)(y, Ay).

2.35. Prove that the minimum value of the ratio <x, Ax) /<x, x) is JOb the eigen-
value with the smallest possible numerical value. Prove also that the maximum
value of the ratio is Am, the eigenvalue with the largest possible numerical value.
Suppose that Xl is an eigenvector of A corresponding to the smallest eigenvalue
Ai and that A2 > Ai is the next eigenvalue in order of increasing magnitude.
Show that the minimum value of the ratio (x, Ax)/(x, x) for all vectors x
restricted by the condition (x, Xl) --: awill be Aa• (Hint. Reduce the quadratic
form to its diagonal form.)
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2.36. Let y be a fixed vector and let m(y) be the minimum yalue of the ratio
(x, Ax)/(x, x) for all vectors x such that (x, y) O. Then the maximum value
of m(y) as y varies over all possible vectors will be 1- 2 , Prove this result. Con­
sider its geometrical significance in three dimensions and then extend it to higher
eigenvalues.t Note that, in contrast to Problem 2.35, this method does not
require a knowledge of the vector Xl'

Evaluation of an Integral

In order to illustrate the application of the theorems that have been
proved about quadratic forms, we shall evaluate the following n-dimen-
sional integrals:

Here F(u) is an arbitrary integrable function of the variable u over the
interval ( - co, co). We assume that aij = aji and, in order to insure
that the integrals converge, we also assume that the quadratic form in
the exponent lis positive-definite. Let A be the matrix whose elements
are a'/,], let x be the vector whose components are Xh X2, • • " Xn , and let
t be the vector whose components are th t 2 , •• " tno Then the integrals
/1 and /2 may be written as follows:

/1 = f exp [i<t, x) - <x, Ax)] dx

----~ll_9.2c--=-fE{<t, x)] exp [-<x, Ax)ll---ld_x,+-, _

where the integration is extended over the whole n-dimensional space.
Before evaluating /1 and /2' we shall derive the following well-known

result :

(2.45)

The proof of this follows from the fact that
OJ

----------=-J-2-T))00 e-at2 dtfOOoo e-as2 ds = JJ-=e_-a_<_S_2+_t_2) d=s"--'d=t=. _

und by a transformation to polar coordinates

frl
1T 00 2

__________-----4J_2--= e-ar r dr dO - TrLao 0 I

t This is an illustration of the minimax principle. See Courant-Hilbert, Methods of
Mathematical Physics, volume 1, chapter I, Interscience Publishers, New York, 1953.
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Now, let P be the orthogonal transformation with determinant one
(Problem 2.30) that diagonalizes A so that

P*AP = D,

D being a diagonal matrix with clements Ah A2' .. " An all greater than
zero. Put x = Py; then

It = f exp [i<P*t, y) - <y, Dy)] dy,

/2 = fF[<P*t, y)] exp [- <y, Dy)] dy,

where the integration is again extended over the vv'hole n dimensional.
space. Note that the Jacobian of the transformation from the x-co-
ordinates to the y-coordinates is one, since the determinant of P is one.
Put y = D-1/

2 zt~;_th_e_n _

11 - (det D) 1/21 exp [l<D 1/2P*t, z) - <z, z)] dz,

/2 = (det D)-1/2 fF[<D-1/2P*t, z)] exp [- <z, z)] dz.

The integration is still over the entire n-dimensional space.
In evaluating / h we shall try to complete the square in the exponent by

putting z = w + b where w is a variable vector and b is a fixed vector.
The exponent in /1 becomes

- <w, w) - 2<w, b) - <b, b) + i<s, w) + i<s, b).

Here we have \llritten s for the vector D-1/2P*t. If we put b i8/2, the
linear tel m in w will vanish and the exponent reduces to

_ <w, w) _ <$, s).
4

Using (2.45), we obtain

II = det n-1/2 exp [- <s, s)/4] Sexp [- <w, w)] dw

= (rr)n/2 det D-1/2 . exp [- <s, s)/4].

Now, by (2.44),

det D 1/2 = (AI . . . An) 1/2 = (det A) 1/2,

and then

(2.46) <s, s) = <D-1/2P*t, D-1/2P*t) = <t, PD-1P*t) = <t, A-It)

since, from the definition of D,
D-1 - P-1A~1(p*)-1.

We have, finally, the following result:

(2 47) Ii - (n)n/2(det A)-1/2 exp [ (t, A-1t)/4]1-o-.-------

t The matrix D-1/2 is the diagonal matrix whose elements are the reciprocal of the
positive square root of the elements of D.
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To complete the evaluation of 12' we rotate the coordinate axes so that
the first axis lies along the direction of the vector s - D 1/2P*t. This
rotation is the result of a transformation by an orthogonal matrix of
determinant one. Let Q be this matrix and z = Qw the transformation;
then

--------hI'1..,--=o--tdcl:t:e~t-±Dr--~I/~2fF[<Q* S, w)] exp [ <lV, lv)]Hd;t-JIyv.-/.-----­

Suppose that WI, W2, •• " Wn are the components of w; then by the definition
of the transformation, Q*s has only its first component (call it (X) different
from zero; and hence

<Q*s, w) - CXWI'

Finally, by integration over W2, W3, •• " Wn we find that

(2.48) 12 = (rr)(n-I)/2 (det A)-1/2J_---cCX)00~F-v«X~u"7)""'-e--u-2~d:~u~, _

where
(X2 = <Q*s, Q*s) = <s, s) = <t, A-It).

We combine our results into

Theorem 2.21. If A is a positive-definite self-adjoint matrix, then

f exp [i<t, x) - <x, Ax)] dx = (7T)n/2 (det A)-1/2 exp [- <t, A-It)/4]

and

fFf<t, x)] exp [- <x, Ax)] ax = 7T(n 1)/2 (det A) 1/2100
00 F(Xu)e US duo

Here the integrals on the left are extended over the entire n-dimensional
space, and

(X2 = <t, A-It).

PROBLEM

2.37. Show that

roo ... roo Xi"'m exp h .f' ,fl1if"ix;j <ix, <ixn t"""'(det A) "'Dtm

when Dkm is tile minor of akm in the matrix A. (Hint. Differentiate (2.47) with
respect to tk and 1m and then put 11 = 12 = ... = 1n = 0.)

Simultaneous Reduction of Two Quadratic Forms

Suppose that a mechanical system is determined by n coordinates
Ch C2' ..., en and that the kinetic energy of the system is given by the
rea] positive-definite quadratic form

n n

---------I-T~iZ ZaiiiC j ,<i, Ai),
'i~~ I j-l
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where the dots mean derivatives with respect to titne, whereas the potential
energy of the system is given by the real quadratic form

n n

V = -2
15 5b.':-.J". = -21/z Hz"
~ ~ "J~t~) '" , ~

Vie show that a new set of coordinates 1]1, 1]2, .. " 1]n can be intIoduced
such that

2T= hi + ... + h;
and

The 1]-coordinates are called the normal coordinates of the system. In
terms of these coordinates the motion of the system is determined by the
following simple set of equations:

d2'fJk - _ ') 'Yl k - I 2 ... ndt2 - Ak'lk, -" ,.

In order to determine the normal coordinates, we must first solve the
following eIgenvalue problem. Find the eIgenvalues A for which the
equation

,

(2.49) (B - AA)x = 0

has a non-trivial solution. When (2.49) is considered as a set of linear
equations for the components of x, it is clear that A is an eigenvalue if and
only if

det IB - AA I = O.

Since this determinantal equation is in general of the nth degree, it will
give n values for A. To every non-repeated value of A there will exist an
eigenvector x satisfying (2.49). We assume that n eigenvectors Xh

X2, .. " Xn exist corresponding to the eigenvalues Ah A2' .. " Am respec­
tively.

Now, since A and B are matrices of quadratic forms, they are self-
adjoint; therefore

. 0 = <xk' Bxj) - <Xj, Bxk) = A/Xk, Axj) - Ak<Xj, AXk)

- (Aj - A.k)<~' Axj).

If Aj #= Ak , this result implies that

<Xk , Axj ) = 0,

or, expressed verbally, that eigenvectors corresponding to different eigen-
values are orthogonal with respect to the matrix A. Just as for real self-
adjoint matrices, the following argument will show that the orthogonality
of the eigenvectors implies that the eigenvalues and the eigenvectors al'e
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real. Suppose that ).1 is complex; then III is also an eigenvalue and Xl

the corresponding eigenvectOl. By the orthogonality property,
<XI, AX1) = O. Since A is positive-definite, this implies that Xl = 0, and
hence Al is not an eigenvalue. This contradiction shows that Al is real
and then Xl must be real.

Because A is positive-definite, we have <~, Axk ) > O. We may there-
fore multiply Xk by a suitable constant to ensure that <xfc, Axk ) = 1.
Consequently, the eigenvectors will form an orthonormal set with respect
to A; that is,

(2.50)

Note that

(2.51) <Xj" Bx,) - <xh AjAxj ) - lj<5 j li;

Now let Q be the matrix whose columns are the eigenvectors XI, X2,

• • • X • we may write, n'

and then

that is, Q* is the matrix whose rows are Xh •• " xn • Let z be the vector
whose components are Ch C2' .. " Cn' Put

. z = Qy;
then

2T = <i, Ai) = <QiJ, AQiJ) = <iJ, Q*AQiJ)
and

2V = <z, Bz) = <y, Q*BQy).

From (2.50) and (2.51) we get

and

This shows that

2T = ~ ~ + ... + i;;

We state our conclusions in

Theorem 2.22. If A and B are real self-adjoint matrices, and, if A is
positive-definite, there exists a real matrix Q such that

Q*AQ I, Q*BQ D,

where D is a diagonal matrix.
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PROBLEM

2.38. Consider the following set of first-order differential equations:

dz
A dt = Bz.

Here A and B are real symmetric matrices, and z is a vector with components
~h ;2' .. " ;1/' Solve these equations by making the substitution

z = t1'ty ,

where y is a constant vector, and then by introducing normal coordinates.

Spectral Representation

We have seen that if the eigenvectors of a real self-adjoint operator L
span the space, they form an D.N. basis for the space. In terms of this
basis the operator L takes a particularly simple form which is very im-
portant for later applications.

Let Xh X2, ••• be the D.N. eigenvectors of L corresponding to the
eigenvalues Ah A2' ... respectively. Then any vector x can be written
as follows:

(2.52)

and we have

(2.53)

Since the eigenvectors are D.N., we find that

~k = <xk , x).

The representation of x and Lx in (2.52) and (2.53) is called the spectral
representation of the operator L. It is apparent that problems involving
L are simplified when this representation is used. For example, given a,
to find x such that

Lx -a,

we use (2.52), (2.53), and the corresponding representation for a, namely,

a = CXIXI + CX2X2 + ...
to get

Since the eigenvectors form a basis for the space, we have

~ - fX1cP·1c;

consequently,
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The ideas presented here are often applicable also when L is not an
operator in a finite-dimensional space and hence is not a matrix. Then
the number of vectors in a basis is infinite, and there are difficulties as to
whether the infinite·series in (2.52) and (2.53) converge. These dIfficulties
may be partly avoided by the following reasoning.

If a is a vector in the space, the coefficients i4 = <xk , a) always exist
even though a series such as (2.52) does not converge. If Vie assume
there exists a solution of Lx a, then

so that again ~k = akiAk. Now that we know the coefficients ~k' the
vector may usually be determined either by using the series (2.52) if it
converges or by some type of summability method. We shall not discuss
summability methods but we shall assume that, if the coefficients ~k are
known, the vector x can be determined.

If L is not a self-adjoint operator, the spectral representatIon becomes
more complicated because, as we have already observed, the eigenvectors
of L may not span the space. However, we shall assume that the general­
ized eigenvectors of L span the space and thus give a spectral represen­
tation.

Let xu, X12, ••• , xU
l

be a chain of generalized eigenvectors of L corres­
ponding to the eigenvalue Al so that

(L - Al)X]j = xI, i-I, (j = 1, 2, ..., kI ),

where XlO - 0 Similarly, let X2h X 22, •••, x2k
t
be generalized eigenvectors

of L corresponding to A2' and so on. Now if we assume that the general­
ized eigenvectors Xii (i = 1, 2, ..., j = 1,2, ..., k i ) span the space, any
vector x may be written as follows:

and we have

These formulas are the spectral representation for the operator L. The
last formula may be more readily understood if we remember that, when-
ever L is a matriX, its representation is as follows:
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i "I Al 1 \, Al 1 ,
. .

. .
. 1

A1 0
L= A2 1 .

. .
.

1
~

'1 n
J'~2 v

. .
.

There 8tm remains the problem of determining the coefficients aij of x

Since L is not self-adjoint, its eigenvectors are no longer mutually ortho­
gonal. To obtain a simple formula for the coefficients, we must use the
eigenvectors for the adjoint operator L *. Theorem 2.11 states that
under certain conditions Al is also an eigenvalue of L* and that there
exists a generalized eigenvector of L* of rank k1 corresponding to AI' At
present we shall restrict ourselves to operators L such that every eigen­
value of L is also an eigenvalue of L*, all eigenvectors of both Land L*
are of rank one, and the eigenvector s of either L or L* span the space.
We call such operators simple.

In this case, the spectral representation for L takes the following form:

Let YI, Y2, ..• be the eigenvectors of L * corresponding to the eigenvalues
AI, A2' • . . respectively; then, if Y is any vector in the space, we may
write

Y = 'YJIYl + 'YJ2Y2 + ...

In order to find the coefficients in the expansion of x and Y, we shall use
the fact which was proved in Theorem 2.11 that the eigenvectors of L
form a hi-orthogonal set to the eigenvectors of L*; that is,

(2.54)
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With the help of this bi orthogonality relation, the coefficients of x or of
yare determined by the following formulas:

~k = <Yk' x),

1]j <Xj, y).

PROBLEM

2.39. Suppose that Land L lie satisfy the conditions of Theorem 2.11. Show
how to determine the coefficients ~ in the expansion of an arbitrary vector x
in terms of the generalized eigenvectors of L.

Functions of an Operator

Let us return to the spectral representation of a simple operator L. If
x is an arbitrary vector, we may write

where

if L is self-adjoint, or where

~k = <Yk' x)

if f, is not self-adjoint. Hereafter, in order to avoid convergence diffi-
culties, we shall consider relations such as (2.55) only as short methods
of indicating that the coefficients of x and Lx in terms of the eigenvectors
of L are ~k and Ak~k' respectively. Now

L2x = f,(Lx) = ~lAixl + ~2A~X2 + ...,
and, similarly,

L n = ~IA~XI + ~2A~X2 + ... ;
hence, if q(A) is any polynomial in A, we have

We may generalize (2.57) to continuous functions of A by the following
definition:

(2.58) f(Qx = ~~kf(~)xk'

This formula has many important applications. For example, the
inverse operator (L - X) I is given by

(2.59) (L - A)-IX = ~(Ak - A)-I~kXk'

Of course, if Aequals some eigenvalue Ak , (2.59) is meaningless unless the
corresponding coefficient ~k is equal to O.

For another illustration of the use of (2.58), let us suppose that the space
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is finite dimensional. Suppose that x depends on a parameter t and is a
solution of the following systenl of differential equatioIls:

dx =Lx
dt .

The general solution of this system will be

(2.60)

where Xo is a vector independent of t. If we represent L in a basis where
it becomes a diagonal matrix, then, by (2.58), (2.60) becomes

x=

. 0

. 0

If L is represented by a matrix A which is not diagonal, then, by The-
orem 2.11, there exists a matrix P such that P-IAP = D, D being a
diagonal matrix. If we solve for A, we find that A = PDP-l, and since

Ak (PDP I)(PDP-I) (PDP-I) PDkp-l,

we have finally

(2.61) q(A) = ~(XkAk = ~(XkPDkp-l = Pq(D)P-l.

This result can be shown to extend to analytic functions I(A) by using the
pOVler series for fO.).

Formula (2.58) is not valid unless L can be represented as a diagonal
matrix. From Theorem 2.11 we know that any operator L in a finite­
dimensional space can be represented in Jordan canonical form as follows:

1

Here A j (1 < j < k) is a matrIX such that the elements on the main
diagonal are all Aj, the elements on the diagonal above the main diagonal
are either zero or one, and all other elem,ents of the matrix are zero.
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We may write

115

where m = m(j), and where

. 0 0

. 0 0

o . )..

Here all the elements on the diagonal above the main diagonal are ones.

By actual matrix multiplication, we see that

o 0

o 0

o

o o
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These results suggest

Theorem 2.23. 1] q(A) lS a polynomial,

q(Aj) q'(Aj) q"(Aj)j2! q"'(Aj)j3!

Proof From the preceding formulas, it is clear that the theorem is
true for q(A) = A, A2, or A3. By mathematical induction on the integer n,
we can show that the theorem is true for q(A) - Art. Because the derivative
of a sum of terms is the sum of the derivatives of each term, the theorem
is true when q(A) is any polynomial.

Now, since by matrix multiplication

q(L) =

and

q "2

we have found a matrix representation for q(L).
The results above can be extended to analytic functions f(A) by using

the power series which converge to f(J.). We give one illustration:

ex
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PROBLEMS

2.40. Find the solution of

117

dx = (3 2\x
--------------rldt"f-~2 3/--------------

such that at f = 0, x = . (Hint. Use (2.61).)
1

2.41. Find the general solution of

2.42. Find the formula for the nth power of the following matrix:

2.43. Suppose that A is a simple operator with eigenvalues 0 < Al < A2

< .... < An, and suppose that leA) is an analytic function of A regular in the
circle ~ < Q. Show that the power series for leA) converges if and only jf
Q> An.

Spectral Representation and Complex Integration

Suppose that L is a simple operator with eigenvectors Xl, Xg, •••, xn

corresponding to the eigenvalues Ah 1.2, •• " An' The theory of the pre­
vious sections shows that, if x is an arbitrary vector, we may write

(2.62) x = 'IXI + ... + 'nxn'

and then

(2.63)

Now, consider the following integral in the complex A-plane:

J_. ~ dA(A - L)-lX.
27T1

Because of (2.63), this integral becOlnes

(2.64)

if the contour over which the integral is taken encloses the spectrum of L,
that is, encloses all the eigenvalues of L.
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Let us illustrate this result by assuming

We find that

<X-L)lX=C- 6
-3r(~~)- 1 C- 2 3 )(~~)1 A - 2 ~2 - A2 - 8A + 15 -1 A - 6 ~2

1- ( ~19· 2) -+- 3~ \
-----------'Al-9-2-i1-'8~'l---+-+----'ll~5 - ;1 +~(; -- ~)/'---·---------

The integral

_________~1~.f(A - L)-lX dA
2'm

is a vector whose first component is

_1 ! ~l(A - 2) + 3~2 dA
2'TTi j A2 - 8A + 15

and whose second component is

~ ! -~1 + ~2(A - 6) dA
2'TTi j A2 - 8A + 15 .

Assume that the contour is a curve enclosing the eigenvalues of L, which
are A = 3 and A - 5. Then, evaluating the residues of the integrals at
the poles A = 3 and A = 5, we have

(2.65) ~A (A - L)-lx dA = _!( ~1 + 3~2 ) + _~(3~1 + 3~2)
2'TTl 2 - ~1 - 3~2 2 - ~1 - ~2

=;d2;'( ~) +;, ;=;'L ~) =(~j =x.

This verifies (2.64).
The evaluation in (2.65) illustrates another important point. The

vectors and , which appeared in (2.65), are the eigenvectors
1 - 1

of L corresponding to the eigenvalues 3 and 5, respectively. Suppose,
then, that we do not know the spectral representation of L. Vie need
only evaluate the complex integral

2~. ~(A - L)-lX dA,
'TTl

and the calculation of residues would automatically give the spectral
representation for the vector x. Of course, in practice, this is an awkward
and inconvenient way of finding the eigenvalues and eigenvectors of a
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matrix. However, 'Ne shall find that for more general operators, such as
differential operators, this lnethod of evaluating the cOllrplex integral of
the inverse of A - L will be a convenient way to obtain the spectral
representation for L.

We now formulate a result somewhat more general than (2.65).

Theorem 2.24. Let L be a simple finite-dimensional operator and let
g(A) be a function analytic on the spectrum ofL; then

------~2~1.~g(A)(A - £)-1 dA - geL),
TTl

where the integration is over any curve which encloses the spectrum of L.
In particular,

---------------=2=I=-J (A L) 1 dA
-7Tl

T
.1,

I being the identity operator.

The proof of this theorem can be obtained by using (2.63), with
f(L) g (L)(A L) 1 and evaluating the resulting integrals by the cal-
culus of residues.

The Characteristic Equation and Functions of Matrices

The methods suggested in the preceding section for finding the function
of a matrix A require a knowledge of the transformation which diagonal-
izes A. In practical applications of matrices, the determination of thc
diagonalizing matrix is quite difficult since it requires determining the
eigenvalues by solving an nth order polynomial equation and also deter-
mining the eigenvectors by solvingn sets orn simultaneous linear equations.
We shall show that a knowledge of the diagonalizing matrix is not neces­
sary since a function of the matrix can be found by the use of the charac­
teristic equation satisfied by the matrix. For example, suppose that

A = G ~)
and we wish to find A4 + 6A. The characteristic equation of A is found
by expanding the determinant of A - AI and substituting the matrix A
for A in the resulting polynomial. This gives the following expression
for the characteristic equation (see Theorem 2.13):

g(A) . A 2 - 2A + 10 = o.
Now, when A4 + 6A is divided by g(A), we find that

A4 + 6A = (A2 - 2A + lO)(A2 + 2A - 6) - 26A + 60I.
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Since A2 2A I 10 is identically zero,

A 4 + 6A = _ 26A + 60/ = ( 34 78).
-78 34

This example suggests the following

Method. If q(A) is a polynornial and if A is an mbitlmy n-dimensional
matrix whose characteristic equation is g(A) = 0, then q(A) is equal to
rCA), where rCA) is the remainder when q(A) is divided by g(A).

The proof of this method is as follows. Suppose that when q()0 is
divided by g(}~), the quotient is ql(A) and the' remainder rCA). Then we
have

q(A) = g(A)ql(A) + rCA),

which, since it is an identity, will also be valid if we replace Aby the matrix
A. Thus

q(A) = g(A)ql(A) + rCA).

By Theorem 2.13, g (A) is identically zero; this justifies the method.
The above method applies only to polynomial functions ofA. Suppose

that we wish to findf(A) whenf(A) is an analytic function of A. We shall
try to do it by following the procedure of the above method. We look for
a polynomial rCA) of degree n - 1 such that

(2.66) f(A) - g(A)h(A) + r(A),

where heAl is an analytic function of A. In '(2.66) we substitute the eigen­
values of A, namely, Ah A2' .. " Am for A. Since g(Ai ) = 0 (1 < i < n), we
get the following n linear equations for the n coefficients of the polynomial
r(A):

(2.67)

Determine rCA) to satisfy the equations (2.67); then

I(A) - rCA)
g(A)

will be an analytic function of A since the zeroes of the denominator are
also zeroes of the numerator. Call this function h().). Since (2.66) holds
for all values of A in a circle around the origin, we may substitute A for A
and get the following identity:

1(.4) - g(A.)h(A) +---#-'r(\-ohIAI.-I+).--------

Again, using the fact that g (A) is identically zero, we find that

f(A) = r(A).
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We formulate this result as

Theorem 2.25. 1] A is a matrix whose eigenvalues, arranged in order oj
increasing absolute value, are Ah A2' ..., An and if f(A) is an analytic
function of A in a circle around the origin with radius greater than ~, then
f(A) equals r(A), the polynomial of degree n 1 for which

l1lk) = r(lk)' k = I, 2, ..., n.

As an illustration of this theorem, we evaluate etA, where

-------------.A~(: - ~j-.-------
Put

etA = rx./ + fJA,
\vhere (X and f3 must be determined. The eigenvalues of A are )'1 - 3,
A2 5. After substitution, we find that

e3t = rx. + 3fJ, e5t = rx. + 5fJ.
The solution of these equations is

therefore

1 ( 3e5t
- e3t

, e3t
_ e5t )

= 2 3e5 t - 3e3t, 3e3t - e5t .

and alsof(j)(A.) - ,(j)o.), where] = 0,1,2, ..., v - 1.

PROBLEMS

2.44. Show that, when )'1 = A2 = ... = Av so that il.v is an eigenvalue of
multiplicity.v for A, Theorem 2.25 should be modified as follows: r(A) is that
polynomial of degree n - 1 for which f(Ak) = r(4e), (k - v + 1, v + 2, ..., n)

2.45. Find a formula for the nth power of the following matrices:

(a)

(b)

(c)

(: ~).
~ cos-IJ ::}-- sin (J

(
1 2

D·1 3

1 0

2.46. Find etA, where A is each of the matrices in Problem 2.45.
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Systems of Difference or Differential Equations

This section win show how the previously developed methods for deal­
ing with functions of matrices can be used to solve systems both of first­
order difference equations and of first-order differential equations. Con-
sider the follovling recurrence relation:

Pn + 1 = 3Pn + 4qm

qn + 1 = Pn + 3qn'

We shall show how to find a formula for Pn and qn in terms of the initial
values Po and qo· Consider On and qn as the components of a vector X,l in
two-dimensional space. Then the recurrence relation may be written as
follows:

where A is the matrix

It is now clear that xn - Anxo. Since the eigenvalues of A are Sand 1,
if we put

we must have
sn - ex + Sfl, In - ex + fl.

The solutIon of these equatIons IS fJ - (5n - 1)/4, ex - (5 - 5'l)/4. Con­
sequently,

An = ~ (2 . sn +2 4(sn - I)) ;
------------zt-4\ sn 1 2' sn + 2 '---'--------------

and then
Pn = l(sn + I)po + (sn - I)qo,

qn = i(sn - I)po + l(sn + I)qo.

The method illustrated here is applicable to systems of recurrence rela-
tions in k unknowns. We formulate it as follows:

Method. To solve a system of k recurrence relations in k unknowns,
consider the k unknowns as the components of a k dimensional vector xn ;

then the recurrence relations may be written as Xn+l AXm where A is the
matrix of the system. Use Theorem 2.25 to express An in terms of the
eigenvalues of A, and then Xn = Anxo will be a formula for the nth set of
unknowns in terms of the initial set of unknowns.

Consider now the second-order difference equation
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To find a formula for Pn in terms of the initial values Po and Ph we write
the difference equation as a set of two recurrence relations, as follows:

Applying the method described above, we find that

Method. To solve the dtfference equation of kth order with constant
coejjicients

Pk+n + alPn+k-l + ... + akPn = 0,

consider Pn+b Pn+k-l, ••. , Pn±1 as the components of a k-dimensional vector
Xn 11. The difference equation is then equivalent to the following set of
recurrence relations:

where

o
o

o
o

o
1

o
o

(2.68)

This recurrence relation can now be solved by the method given on
page 122.

As a final application of the theory, we shall discuss the solution of a
system of first-order differential equations. Let xU) be a k-dimensional
vector depending on a parameter t, and suppose that

dx
-=Ax
dt '

where A is a constant matrix; then

(2.69) x(t) = eA txo,

where Xo is the value of x(t) for t = o. The proof of this result is as
follows: The matrix eAt may be defined either as the infinite series of

(At)2.
mutrices 1 + At -I-- "·-2f"~ -I-- .•• or as the lnatrix whose eigenvalues are
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eAlt, •• " cAnt, where At' .. " An are the eigenvalues of A. In either case,
we find that

d At

~t = Ae
At

•

Therefore,
dx deAt
- = - Xo = AeAtxo = Ax
dt dt '

and hence x(t) as given by (2.69) is a solution of the system in (2.68).
'.Ve state this result as

-- -Ax
dt '

Theorem 2.26. The solution of the system

dx

where A is a constant matrix, is

x(t) = eAtxo,

where Xo is the value of x(t) for x = o.

PROBLEMS

2.47. Show that if

and we define
A2 A3

eA =l+A+-+- + ...
2! 3! '

then

deA dA A
dt =1= dt e .

2.48. Suppose that A(t) is a matrix whose elements depend on a parameter t
and suppose that

;4(11);4(t2) == ;4(12);4(11)

for all values of 11 and t'l.' Define

dAn = nAn-1 dA, de~ = dA eA
dt dt dt dt .

Show that

df(A)

d1
lim f(A(t + h~ -f (A(t)).

2.49. Find a formula for Pn and qn in terms of Po and qo If
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2.50. Find a formula for Pn in terms of Po and PI if

Pn + 1 = Pn + Pn-l'

Find the limit of Pn+l/Pn as n~ 00.

2.51. Find a formula for Pn, g"h and rn in terms of Po, go, and ro if

Pn + 1 - 2Pn + qn + rn,

qn + 1 = 2qn + rn,

2.52. Solve

d:;t) = 3/(1) + 4g(I),

d~~t) = f(t) + 3g(t),

given that/CO) = 1, g(1) = 1.

Operators in General Spaces

125

There are two reasons why the spectral theory for operators in general
spaces is more complicated than the theory thus far presented in this
chapter. First, the general operator may have eigenvalues of infinite
index; and, second, the eigenvectors and generalized eigenvectors of the
operator IImy Hot span the space. We shall not discuss how these specific
difficulties may be treated but, instead, we shall present some of the
concepts which are needed in the general theory.

The spectral representation for an operator L depends on the study of
the inverse of the operator L J. for all complex values of J.. The
operator L Ais said to have an inverse if for any vector a in the range of
L - A there exists a unique vector x such that

(2.70) (L - A)X = a.

By Theorem 1.4, a necessary and sufficient condition for the existence of
an inverse is that the homogeneous equation

(2.71) (L - A)X = 0

have only the trivial solution x = o.
If equation (2.71) has a non-trivial solution, then A is an eigenvalue and

the solutIon x is an eigenvector of L. In such a case, A is said to belong
to the point spectrum or the discrete spectrum of L.

Suppose that A is such that the equation (2.71) has only the trivial
solution x = 0; then the operator L - A has an inverse and we may
distinguish three mutually exclusive possibilities. First, the closure of the
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range of L ). may be the 'Nhole space cS and the inverse is a bounded
operator. This means that for every vector a in cS there exists a unique
vector x satisfying (2.70) and such that the ratio <x, x)/<a, a) is bounded.
In this case, A is said to belong to the resolvent $et of the operator L.
Second, the range or the closuret of the range ofL - Ais the whole space,
but the inverse is an unbounded operator. In this case, ). is said to be in
the continuous spectrum of L. In the third case, the range or the closure
of the range of L - Amay be a proper subset of $. In this case, A is said
to be in the residual spectrum of L. The spectrum of L consists of all
values of A which belong to either the discrete, the continuous, or the
residual spectrum.

A few illustrations will clarify these concepts. In Eoo put

and consider the following operators:

Cx = (0, ~h ~2' •••),

Dx - (~2' ~3' ~4' . . .),

Ex = (~h ~2/2, ~3/3, ...).

The operator E has the values A = 11k, (k = 1, 2, ...)
in the discrete spectrum because

(E 1jk)ek - 0,

where ek is the vector whose kth component is one and the other compon­
ents are zero. Since the eigenvectors ek form a basis for Eoo , we find that
the solution of

(E - X)x,= a

is given by x = ~~kek' where

~k = - (A - 1Ik)-lOCk

if a - ~ockek. Clearly, the inverse of E - A exists for all A ¥= Ilk; how­
ever, when A = 0 the inverse is unbounded since E-1ek = kek and
<E-1ek' E-1ek)l<eh ek) = k2• The point A = 0, which is a limit point in
the discrete spectrum, is therefore in the continuous spectrum but all
other values of A =1= l/k (k 1, 2, . . .) are in the resolvent set for L.
Note that even though the eigenvectors of E fOHn a basis for the space,
the continuous spectrum of E is not empty.

The operator C provides an illustration of the residual spectrum. The
point A = 0 is clearly not an eigenvalue of C. The closure of the range

t The closure of a set is the set together with all its limit points.
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of C is not the whole space E oo since all vectors whose first component
is not zero are lacking; therefore, we conclude that zero is in the residual
spectrum for the operator C. The adjoint of C is D, and this latter
operator has zero in the discrete spectrum because Del = 0 where el is the
vector whose first component is one and all the other components are zero.
This is an illustration of the following fact:

If the value Al is in the residual spectrum of L, then Al is in the discrete
spectrum oiL*.

The proof of this result follows from the fact that Theorem 1.5 implies
that the null space of L * - Al is the orthogonal complement of the range
of L - AI' Since by hypothesis the closure of the range of L - Al is not
the whole space, we conclude that the null space of L* Al is not elupty,
and consequently Al is an eIgenvalue of L*.

The definition of the continuous spectrum is not easy to apply in
practice. It is easier to use the conc~pt of the approximate spectrum. A
value A is in the approximate spectrum of L if there exists a sequence of
vectors Xn such that fxnl--=~l~aH'nW"d1---Q-1suf+lc~h'\----1'-lthF¥.a:Ht~-------------

(2.72) I(L - A)xnl < lin.

To illustrate this concept, consider the operator E. Put Xn = en; then
------teJ = I and ~I = lin; therefore, zero is in the approximate spectrum

ofE.
If we put (L - A)Xn = am we have

Ixnl >n'
------------------1~ ,

consequently, the inverse of L - A cannot be bounded. This shows that
any value of A in the approximate spectrum of an operator cannot be in the
resolvent set.

Any eigenvalue )'0 belongs to the approximate spectrum because if we
put Xn - Xo (n - 1, 2, .. '), where Xo is the eigenvector corresponding to
A.o, then (2.72) will be satisfied. Any value A in the continuous spectrum
of L belongs also to the approximate spectrum of L. By the definition of
the continuous spectrum, the inverse ofL - Ais unbounded; consequently,
there exist vectors Xn such that if we put (L ),)xn - an, then

<Xn, xn )--- >n.
<am an)

Nor.malize the vectors Xn so that ~ = I; then equation (2.72) is satisfied.
This proves that A is in the approximate spectrum. We have therefore
proved



128 PRINCIPLES OF APPLIED MATHEMATICS

Theorem 2.27. The approxiJl'late spectrum contains all ). which are in
the discrete and continuous spectrums, but it does not contain any A which is
in the resolvent set.

A value of). in the residual spectrum need not belong to the approximate
spectruru. FoI example, zeIO is in the residual spectrum of C, but since
--~ for all x, it is clear that zero cannot be in the approximate

spectrum of C.

PROBLEMS

2.53. Show that a self-adjoint operator has no re~idual spectrum.

2.54. Show that if Ais in the continuous spectrum of L, then L - ). does not
have a closed range.

2.55. If A is in the residual spectrum of T. and if the range of [,* A is closed,
show that A is an eigenvalue of infinite index for L*

Illustration-the Continuous Spectrum

In this section we shall discuss the spectral representation for a typical
operator whose spectrum contains the continuous spectrum only.

Let the vector x in ElX) have as its nth component ~n (n = 1, 2, ...).
Consider the operator Fx which has as its nth component ~n-l + ~n+l

(n = 1, 2, ...). Here we have assumed ~o = o.
The operator F is clearly self-adjoint. To find its spectral representa-

tion, we first investigate whether F has any eigenvalues. Consider the
equation

(F- A)X =0.

The nth component of this equation is

(2.73) ~n-l + ~n+1 - A~n = 0, (n = 1, 2, 3, ...).

This is a recurrence relation which may be treated by the methods of the
section on difference and differential equations or by the following
equivalent method.

Assume that ~n = pn; then (2.73) becomes

(2.74) p2 - Ap + 1 = O.

If we put A - 2 cos 8, where 8 may be real or complex, the roots of (2.74)
are p = e ifJ or p = e 'ifJ; consequently, for arbItrary values of (X and p, the
formula

~n = cx.einfJ + {Je- infJ

will satisfy (2.73) when n 1, 2, 3,···. The extra condition that
;0 > 0 will be satisfied if (X + fJ = o. We see then that
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Since ex is an arbitrary constant, we may put 2iex 1 and then we have
~n - sin nO as a solution of (2.73).

However, the vector whose nth component is sin nO has infinite length
if 0 :1= 0, for the infinite series

sin2 () I sin2 2() -+ sin2 3() +.. .
does not converge. This follows from the relations

n n

(1; L: sin2 kO ~ - ~L: cos 2M ~ + ~
n

2n + 1 _ ! sin (2n + 1)0
4 4 sin {}

Since the only solutions of (2.73) are vectors which do not belong to the
space, we conclude that the operator F has no eigenvectors [when 0 0,
the solution of (2.73) is the zero vector] and therefore F has no discrete
spectrum. However, we can show that every value of Abetween - 2 and
2, excluding the extremes, belongs to the approximate spectrum and
therefore also to the continuous spectrum To see this, let 1'n be the vector
in E such that its kth component is sin kO for 1< k < n and such that the
remainder of its components are zero. Put (F - l)vn = bn ; then t~e nth
component of bn is - sin (n + 1)0, the (n + l)th component is sin nO,
and all other components are zero. We have ~c--_a----,n,,---a_n_d _

<bm bn) sin2 nO I sin2 (n I 1)0.

Put un = vn/an and an = bn/an; then, if - 2 < A< 2, 0 is real and we find
that Iunl = 1 and .

2

an
Since this converges to zero, we conclude that the approximate spectrum
contains all Abetween - 2 and 2. Note that if 0 is not real, sin2 (n + 1)0
becomes infinite and the length of an does not approach zero. It can be
shown that all values of () outside the interval ( - 2, 2) belong to the
resolvent set of F.

Thus we have found the spectrum of F, but for our purposes the im­
portant thing is the spectral representation. We may obtain it by the
following heuristic reasoning.

If F had a purely discrete spectrum with the eigenvalues Ah A2' . . . and
the eigenvectors Xh X2, •• " we would have the spectral representation

x -~~n,

However, F actually has a purely continuous spectrum. Instead of a
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discrete set of eigenvalues, ),r, )'2, .. " Vie have a continuous set ),(j, where
o< 0 <TT. The usual method in going froIIl a discrete set of elenrents
to a continuous set is to replace sums by integrals. We expect then that
the spectral representation will become

(2.75) x = {!' ~oXo dO,--------------.1011-----------------

Fx = fo
TT

J..o~#0 dO,

where

(2.76) ~o = <x, xo).

These formulas will be correct If they are interpreted properly. The
symbol Xo will represent the vector, not in Ecm whose nth component is
(2jTT)I/2 SIn nO (n - I, 2, ...). The scalar product In (2.76) IS formally

--------+(2~1f-'j,/7Tf-I-)=--lI-=2[(l1 sin 0 + (l2 sin 20 + ...]1----------

if we assume

This infinite series does not converge in the general case, but it can be
--s'-h-ow-nt that, if L.(l% converges, there exists a function ~o in 1!2 such that

its nth Fourier sine coefficient is (In' With this function ~o, the formulas
in (2.75) are true in the sense that the nth components of each side are
equal.

The vectors Xo are the continuous analogue of the eigenvectors. The
O.N. property of the eigenvectors of a self-adjoint operator would require
<xe, xo') = ~o(Y. However, this scalar product does not exist even in the
sense by which ~(J was defined. To get (2.76) from (2.75) we need the
formula

or

__________ tn-7T-"'J~(J[J':"C~_UU(J(J'____',di=-=rJ'------__~"'_"o'__=_'. _

The symbol ~oo' in this equation is known to physicists as Dirac's
~-function. The next chapter will show exactly in what sense this symbol
(it is not a function) must be understood.

t Titchmarsh, Theory ofFunctions, Chapter Xln, Clarendon Press, Oxrord, ]939.



APPENDIX

PROOF OF THEOREM 2.11

Theorem 2.11. Let). be an eigenvalue offinite index for the operator
L and let L A and L* A both have closed ranges; then A is an eigen-
value ofL* also. Moreover, to any chain of length kfor L, namely, vectors
eh e2, ..., ek' such that

ei (L A) i le1 (j 1, 2, . . " k),

there corresponds a chain of length k for L *, namely, vectors 117 J~' . . ., fk'
such that

and such that

We prove this theorem first in the case where the generalized null space
of L - A contains only the chain eh ..., eke Consider the equation

(2A.I) (L - A)X = e1.

If this equation had a solution x = eo, the vectors eo, eh ..., ek would
form a chain of length k + I contrary to our hypothesis; consequently,
(2A.I) has no solution. However, if the equation

(2A.2) (L* A)Y ,0

has only the trivial solution y = 0, then, since L - A has a closed range,
equation (2A.1) must have a solution, by Theorem 1.5 This contradiction
shows that there must exist a non-trivial solution /1 of (lA.i) such that
(fh e1) *- 0; therefore A is an eIgenvalue and J1 IS an eIgenvector ot L*.
Normalize 11 so that </h e1) = 1. Note that for 2 <j< k,

</h ei) = </1, (L - A)i-1e1 ) = «L* - A)i-1/h e1) = 0

since (L'* ).)/1 o.
Now, consider the equation

(2A.3) (L'* - A)Y = fl.

Again, by Theorem 1.5, since L'* - A has a closed range and since
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of (2A.3) is not unique since g octl (oc any scalar) is also a solution.
Choose IX so that

(2A.4) <g - rxfh el) = <g, el) - rx<fh el) = O.

Put/2 g (Xi}, then

and

Also, for 3 < j < Ie, we have

Since, by equation (2A.4), <f2' el) = 0, we conclude that

In the same way, by considering the equation

{L* - ).)y =/2'
we obtain a solution/3 such that </3, el) = 0; ~hen, as before, we find that

It is clear that the process continues until we have obtained the chain
Ih12, •• " fie described in Theorem 2.11, where

f j = (L* - ).)k-jfk (; = 1, 2, .. " k)

and where
<Ii, ej) = ~ij'

If the generalized null space contains chains other than the one gener­
ated by eh the above proof must be modified. The proof of the existence
of the eigenvecto:l!l is the same as before, but now, in addition to the eigen-
vector /1, there must exist an eigenvector of L * for each additional chain
in the generalized null space. To see this, suppose that there is a chain
generated by e~ ; then we can find a scalar {3 such that

<iI, e~ - pel> - O.

IfII were the only eigenvector of L *, this would imply that the equation

(L - ).)x = e~ - f3el

has a solution x = e~. This is impossible since e~ would generate a
chain whose length is greater than the lengths of either the el- or the
e;-chain; consequently, we conclude that the operator L*' - ). has another
eigenvector f'. A similar argument shows that every chain produces an
eigenvector for L* - A.

Since any linear combination of the eigenvectors of L *' - A. is still all

eigenvector of L* - A., it is possible to choose an eigenvector which is
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orthogonal to all the chain-generating vectors except el' We shall denote
this eigenvector byfl. We normalizefl so that <f~, eI) ~ 1; then "tve have,
as before,

(2A.5)

and also

(2A.6) <!h e') = 0,

where e' is a vector in any of the other chains which form the basis for
the null space.

From (2A.5) and (2A.6) we see that!l is orthogonal to all the solutions
of (L - A)X = 0; consequently, the equation

(2A.7) (L* - A)Y =!1
has a solution. The solution is not unique since the homogeneous
equation has a independent solutions, where a is the number of chains in
the basis for X Just as in the case of one chain, it is possible to so
choose a solution!2 of (2A.7) that

<(2' el) = <f2, e') = 0;
then we shall have

<f2' ej) = ~2j.

Similarly, we can define fs, ..., !k and thus complete the proof of
Theorem 2.11.
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GREEN'S FUNCTIONS

Introduction

The methods dIscussed In the preVIOUS chapters wIll now be apphed to
the solution of ordinary linear differential equations. The general theory
of linear equations suggests two methods which can be used to solve the
equation

Lu j,

where L is an ordinary linear differential operator,!a known function, and
U the unknown function.

One method is to find the spectral representation' of L by studying the
solutions of the equation

Lu = AU,

where A is an arbitrary constant. This method will be discussed in the
next chapter. The other method is to find the operator inverse to L,
that is, to find an operator £-1 such that the product £-1£ is the identity
operator. This chapter will be devoted to a complete exposition of this
method. During this exposition, we shall find that, as might be expected,
the inverse of a differential operator is an integral operator. The kernel
of this integral operator will be called the Green's junction of the differ-
ential operator. The techniques which we shall provide for finding the
Green's function use a tool which has proved valuable in many branches
of applied mathematics, namely, the Dirac t5-function.t We shall there-
fore begin with a discussion of the meaning and significance of the
t5-function.

The Identity Operator as an Integral Operator.

Suppose L IS a lInear dIfferentIal operator acting on a space of functions
U(x). The operator inverse to L is the operator L -1 such that L-lL
=LL-l = I, where I is the identity operator. Let us assume that L-l
is an integral operator with kernel g(x, t) so that

L lU - fg(x, t)u(t) dt;

t See Dirac, The Principles ~f Quantum A4ee!tunics, Clarendon Press, Oxford, 1947.

134
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then, by formal (not necessarily rigorous) manipulations, we find that

135

(3.1) u(x) = Iu = LL-1u = Lfg(x, t)u(t) dt = fLg(x, t)u(t) dt.

Consider the kernel Lg(x, t). Since L is an operator involving differ­
entiation with respect to x, it seems that we may write

Lg(x, t) = <5(x, t),

where <5(x, t) is a function of x and t, and then (3.1) becomes

(3.2) u(x) - J+Jtc5{~x,o-lt--m)Ur,t-l.{tc+-)£udt~.---------

However, it is easy to show that, if (3.2) holds for all continuous functions
u(t), then <5(x, t) must be zero if x =1= t so that we may put

<5(x, t) = <5(t - x),

and equation (3.2) becomes

(3.3) u(x) = J<5(t - x)u(t) dt.

The symbol <5(x) is known as Dirac's <5-function.
It can be shown (see Problem 3.1) that if (3.3) holds for every continuous

function u(x), then <5(x) = 0 if x =1= O. This fact agrees with Dirac's
definition: the <5-function is zero for every value of x except the origin,
where it is infinite in such a way that

__________ r_oo_dU-\(-"'Lx)l-'d.......x'---=---.Ll~. _
t-oo

Mathematically, this definition is nonsense. If a function is zero
everywhere except at one point, its integral, no matter what definition of
the integral is used, is necessarily equal to zero. However, the <5-function
has proved to be of such great utility that the physicist rightly refuses to
give It up. It is the mathematician's task to find a method by which the
use of the <5-function symbol can be justified.

Recently, Laurent Schwartz has proposed a method called the Theory
of Distributions which justifies not only the use of the b-function but also
the use of all derivatives of the ~-function. The method is very powerful
because it enables us to interchange limiting operations where such an
interchange is not valid for ordinary functions and because it enables us
to use series which ordinarily would be called divergent. For example,
the fact that <5(x) is not a function indicates that (3.3) is not a mathematic-
ally valid consequence of (3.1). Equation (3.3) is not valid because in
(3.1) we have interchanged the operations of differentiation and integra­
tiOI', and in this case the interchange is not justified. However, if the
cqus;\tions are understood in the sense of the Theory of Distributions, the
interchange of operations is legitimate, and (3.3) becomes a valid conse-
qucnce of (3.1).
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We shall state, \vithout proof, such results of this theory as we need.
For proofs, we refer to the original sources.'"

PROBLEM

3.1. Show that if c5(x, t) is a continuous function such that (3 2) is satisfied
for any continuous function u(t), then c5(x, t) is zero unless t = x. (Hint.
Suppose that c5(t + IX, t) *" 0 for a < t :::;:: b; then take u(t) = c5{t + IX, t) for
a + e < t < b - 8, u(t) = 0 for t outside the interval (a, b) and Jet u(t) be
continuous in the intervals (a, a + e) and (b - E, b).)

Interpretation of the 15-function

What should be understood by the l5-function symbol? Its most
important property and the one that makes it so useful is the following ~

for every continuous function ep(x), we have, from (3.3), that

(3.4) 1:00 l5(x)4>(x) dx = 4>(0).

This property may also be expressed thus: given a continuous function
c/>(x), the l5-function picks out the value of that function at the origin.

It turns out that the ~-function can be handled algebraically as if it were
an ordinary function. However, any equation involving the l5-function
should be understood in the following sense: if the equation is multiplied
by an arbitrary continuous function 4>(x) and then integrated from - 00

to 00, with (3.4) used to evaluate integrals involving l5-functions, the result
will be a correct equation involving ordinary functions. For example,

(3.5) xl5(x) = 0

because if 4>(x) is a continuous function and if we put x4>(x) = tp(x), then

Ix~(x)4>(x) dx -1~(x)?p(x) dx -?p(0) - o.
We shall assume that the usual techniques of integration such as substi­

tution and integration by parts may be applied to integrals involving the
~-function.t As an illustration of this, we show that i~f(X) is a monotonic
function of x which vanishes for x - xo, then

(3.6) l5(f(x)) = l5(x - xo)§
If'(xo) I

where by the symbol c5(x - xo) we understand that

-00

t L. Schwartz, "Theorie des distributions," Actualites scientifiques et industrie/les,
No. 1091 and 1122, Hermann & Cie, Paris, 1950 1951.

:j: Proofs are in L. Schwartz, op. cit.
§ The absolute value of the derivative ensures that the inteifation will always be

from - 00 to + 00.
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J~oo ~(f(x))c/>(x) dx

ck(x) .
__p_u_l_y_J_P(_x)_a_n_d_"P_(y_)_I-I-f'--hi(x(,+)+-I' -------

then it becomes

fOO rfJ(xo)
-00 ~(Y)1p(y) dy = 1p(O) = If'(Xo) 1-' _

As special cases of (3.6) we have

and
~(x) = ~( - x).

We notice that the function 6(x) is treated exactly as if it were an ordinary
function except that we shall never talk about the "values" of ~(x). We
talk about the values of integrals involving ~(x).

PROBLEM

3.2. Prove that f(x)~(x) = f(O)~(x) if f(x) is a continuous function.

Testing Functions and Symbolic Functions

The function ,(x) that vie have used in the preceding section to test the
validity of (3.5) and (3.6) is an example of what we shall call testing
functions. For work with differential equations it is convenient to
restrict the term testing functions to functions p(x) which are continuous,

convenIent to introduce a scalar product in thIS space; instead, we shall
introduce the notion of convergence. We say a sequence of testing
functions c/>nCx) converges to zero if the functions c/>n(x) and all their deriv­
atives converge uniformly to zero and if all the functions c/>nCx) vanish
identically outside the same finite interval.

Just as in Chapter 1, we may define linear functionals F(¢) on the space
or testing functions. We repeat the definition of linear functional: F(ep)
is a linear functional if to every testing function c/>(x) a real or complex
n.umber F(r/» is assigned such that

F(lc/» = l F(c/»,
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\\rhere ). is any scalar. A functional .P'&» is said to be continuous if the
sequence of numbers F(c/>n) converges to zero whenever the sequence of
testing functions c/>ix) converges to zero in the sense defined previously.
The following are examples of continuous linear functionals:

F2(c/» = fol
c/>(x) dx.

Laurent Schwartzt calls any continuous linear functional on the space of
testing functions a distribution.

We have seen in Chapter 1 that a continuous linear functional on a
vector space having a scalar product can be expressed as a scalar product.
For the space of testing functions this result does not apply, since no scalar
product was defined. It seems natural to introduce the following defin-
ition of scalar product:

<c/>, tp) = J~oo c/>tp dx.

However, with this definition we find that the space of testing functions
is not complete and the results of Chapter 1 still do not apply. Neverthe-
less, we should like to express any continuous linear functional f(c/» as
follows:

F{p) = f~oo s(x)c/>(x) dx.

Sometimes this is possible; for example, when

F(c/» = J; c/>(x) dx,

s{x) = 1, 0 < x < 1, and sex) = 0 otherwise. At other times this is not
possible; for example, when FV/» = c/>(O) or FV/» = c/>'(O).

We have seen, however, that it is possible to introduce a symbol c5(x)
such that

F(c/» = c/>(O) = f~oo b(x)c/>(x) dx.

The ~-function is an example of a symbolic function. Given any con-
tinuous linear functional F(ip) on the space of testing functions, we shall
introduce a functional symbol, say sex), and put

________~i=-<Jcooou--s-(x----C)c/>-(x-)_dx__F------'(c/>_). _
We shall say sex) is a symbolic function. Note that a symbolic function
need not have values. It produces values only when multiplied by a testing
function and then integrated.

IfI(x) is an integrable function,

foo ~

t L. Schwartz, op. cit.
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is clearly a continuous linear functional on the space of testing functions
(Problem 3.4); consequently, every integrable function is a sYlubolic
function. However, there are some symbolic functions, such as the
l5-function, which are neither integrable nor functions. Another example
of such a symbolic function is the symboll5(n)(x) which we define as:

j:: l5(n)(x)c/>(x) dx = (_)ndn~ .
00 dx x=o

Since the right-hand side is a continuous linear functional on the space of
testing functions, the symbol d(n)(x) is a symbolic function

Often the functional may be extended to a wider class of functions
than to the testing functions; for example, the l5-function produces a
functIonal whIch IS applIcable to the space of continuous functIons. In
such cases we shall use the functional on the larger space without explicit
statement.

It can be shownt that symbolic functions can be combined algebraically
as if they were ordinary functions, except that the product or quotient of
two sYlubolic functions may not have a meaning. We shall assume that
in the Integrals Involving symbolic functions the usual rules of integratIon
are valid.

To summarize, symbolic functions are used as if they were ordinary
functions. Any equation involving symbolic functions is to be understood
in the following sense: if the equation is multiplied by an arbitrary testing
function and integrated from - 00 to 00, with the functional property
of the symbolic functions used to evaluate the integrals, the result should
be a correct equation involving ordinary functions.

PROBLEMS

3.3. Show that the function

ef>(x) - exp ( - x-2) exp [ - ex - a)-2], 0 < X < a

-0, x < 0 or a < x

is a testing function.

3.4. Prove the statement in the text that an integrable function f(x) defines a
symbolic function. (Hint. Show that If+i>cp(X) dx is a linear continuous
fu nctional.)

Derivatives of Symbolic Functions

We wish to define the concept of the derivative of a symbolic function
i 11 such a way that it 'NiH be valid even if the symbolic function is an

t L. Schwartz, op. cit.
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ordinary function. Since the symbolic function is defined by the func
tionals it produces, we must use an integration property of the derivatives
of ordinary functions. Such a property is that of integration by parts.
Iflex) is a function with a continuous derivative, then

(3.7) jooex/'(x)cp(x) dx = - j""'-<,ooCXlu-J_"(x_)cp~'(_x)_dX_. _

Note that because 4>(x) vanishes identically outside a finite interval, the
integrals converge and the boundary terms are zero. We shall use (3.7)
to define the derivative of a symbolic function sex) and we shall say
s'(x) is the derivative of s(x) if

(3.8) J~oo s'(x)4>(x) dx = - J~oo s(x)4>'(x) dx

for every testIng function cp(x). SInce the right-hand side of (3.8) always
exists, the left-hand side can be used to define the derivatives of sex).
For example, <5'(x) is defined by the relation:

J~oo <5'(x)4>(x) dx = - J~oo <5(x)4>'(x) dx = - 4>'(0);

consequently, 6'(x) produces the functional which assigns the value

dx'Yl

- cp'(O) to a testing function cp(x).
In the same way, we can define the second derivative <5"(x) of the

<5-function as the derivative of <5'(x). We have:

_____1.:00 <5"(x)p(x) dx = - 1.: <5'(x)p'(x) dx = p"(O).

We see then that the symbolic function <5(n)(x) defined in the previous
section is actually the nth derivative of <5(x), that is,

(5Cn,(x) = dn~(x).

We can show that the <5-function itself is the derivative of the function
H(x), which is defined by the relation

(3.9) J: H(x)c/>(x) dx = fo,.--oo-Fc/>--'=-::(x+-)d~x=------. _

To see, this, use (3.8). We have

J~oo H'(x)4>(x) dx = - J~oo H(x)4>'(x) dx = - Jooo 4>'(x) dx = 4>(0)

since eP(oo) - o. Consequently,

(3.10) H"(x) - ~(x).

The symbolic function H(x) defined in (3.9) is equal to the ordinary
function having the following values:

H(x) - I, x> 0

= 0, x < O.
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This function is well kno\vn to physicists and engineers as the Heqviside
unit function. Note that the derivative of the function H(x) is zero for
x < 0, zero for x > 0, and undefined for x = 0.

It can be shown that the derivative as defined in (3.8) has the usual
properties of a derivative: it is a linear, homogeneous operation, and the
usual product rule for differentiation holds if the products involved have
a meaning (Problem 3.7).

PROBLEMS

3.5. Prove that J(x) ('j'(x) = J(0)('j'(x) -- J '(O)('j(x).

3.6. Prove that xm~(n)(x) = 0 if m > n + 1.

3.7. If f(x) is a continuous differentiable function and if sex) is a symbolic
function,

[f(x)s(x)), - f(x)s'(x) + f'(x)s(x).

(Hint. JfscP' dx JsfiP' dx Jsf'cf1 dx + Js[frp' + f'rpl dx

= - Jsf'rp dx - Js'fep dx.)

Symbolic Derivatives of Ordinary Functions

If a continuous function f(x) has a piecewise continuous derivative,
the derivative of f(x) as defined by (3.8) will be the customary derivative
f'(x).- Suppose, however, thatf(x) has a jump of magnitude al at x = Xl

whereas for all other values of x it has a piecewise continuous derivative.
The derivative of the function f(x) is ['(x) for x < Xl and for x > Xl but
is undefined for X = Xl. However, we shall see that the symbolic function
which is defined by (3.8) to be the derivative of f(x) is not the ordinary
derivative. We shall call this symbolic function the symbolic derivative of
f(x), and we shall denote it by f;(x). Put

where

We have

f~oo f(x)c//(x) dx = f~oo g(x)c/>'(x) dx + alf-: H(x - XI)c/>'(X) dx

_________-_Joooog'(x)p(x) dx - aIP(xI)

since g'(x) is continuous and piecewise differentiable. From (3.8) we see
that

therefore
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Since g'{x) f'{x) wherever it exists, we find that
f;(x) = f'(x) + al 3(x - Xl)'

This relation is easily generalized to functions [(x) having jumps of
magnitude ah •• " an at the points i%h •••, i%n' We get

3-]unctlOns at the jumps multiplied by the magnitude of the jumps.

In a similar way we see that .
!s"(X) = f"(X) + al<5'(x - (Xl) + ... + an<5'(x - (Xn)

where Ph ..., Pm are the points of discontinuity in f'(x) and bh ..., bm
are the corresponding jumps in the value of['(x).

For our purposes it will be more convenient to use symbolic derivatives.
Henceforth, we shall drop the subscript s and use the symbols [' (x),
f"(X), etc., to denote the symbolic derivatives.

Examples of Symbolic Derivatives

The symbolic derivative of the function IxI is the function which is - 1
for x negative and + 1 for x positive. We call this function signum x
and denote it by sgn x. We have from Theorem 3.1

(3.11)
d
dx sgn x = 2<5(x)

pecause the sgn function is constant except for a jump of magnitude two
at the origin.

As an application of this result, consider the integral

____________~T~rl 1""11-'t''f/J'---I"(",,,Xr-)_.dx"'-. _
~

Using repeated integration by parts, we find that

I = Ixlv/(x)I~1 - f~l Ixl'VJ'(x) dx

________------'[t:1VJ'(x) txl'VJ(x)]~1 + fjxi"VJ(x) dx

tp'(l) tp'( 1) tp(l) tp( 1) + 2tp(O).

This method for evaluating I is simpler than the usual one in which I is
written as

---------~fIO Xtp"(x) dx + Jo-1~xtptft"+'(x~)t-1d'Y.Ix~--------
and integration by parts is applied to each integral separately.
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As another illustration, consider the problem of maXimizing the
integral

K = f~l f(x)(x - XI)(X - X2) dx,

where f(x) is an integrable real function such that I~~ 1, and where
Xl, X2 are arbitrary numbers between - 1 and 1. For given Xl, X2, the
integral K will be a maximum if f(x) = + 1 when (x - Xl) (X - X2) is
positive and if f(x) = - 1 when (x - Xl) (X - x2) is negative; therefore

Now K* will be a maximum for those values of Xl and X2 which make

oK* _ oK* _ 0

We have '

oK* JI-;- = -. (x - x2) sgn [(x - XI)(X - x2)] dx
uXI -1

-------------++--f~l(X - XI)(X - x2)2£5(x - Xl) dx.

The second integral is zero since (x - XI)(X - X2) vanishes when X = Xl.

Finally,

oK* JXl s'XI S,l-;- = - ex - X2) dx + ex - X2) dx - ex - X2) dx.
uXI 1 Xl XI

There is a similar formula for oK*. The remainder of the solution may
OX2

be left to the reader.
PROBLEMS

3.8. If f(x) is absolutely continuous, show that the derivative of the distribu­
tion defined by f(x)H(x) is/'(x)H(x) +1(0) r.5(x).

3.9. Ifl(x) is absolutely continuous with simple zeroes at X b •••• a~m show
that the derivative of sgn (f(x)) is

3.10. Show that the integral

u(x) = fix - el4>(o de
slltisfies the differential equation

u" 24>(x).
(Hint. Use (3.11).)

3.11. Show that the integral
u(x) = Jeiklx-C14>(C) de

Nutisfies the equation
u" + k2u = 2ik1>(x).

(1-11111, Use (3.11) and the fact that (sgn x)2 = 1.)
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3.1:1. Ifp(x)-l is an integrable function, show that

i x de
u = H(x) -

o pee)
is a solution of

The Inverse of a Differential Operator-Example

We now return to the basic problem of this chapter, that of inverting
a differential operator L. Suppose that 1p and pare testing functions and
consider the equation

Ltp = 4>.
As in a previous section, we assume that the inverse operator L -1 is an
integral operator with some kernel g(x, t) such that

L 14> - fg (X, t)4>(t) dt,

but now we permit g(x, t) to be a symbolic function. Applying the
differential operator L to both sides of this equation, we get

LL-lck = p = JLgp dt.

This equation will be satisfied if we find g such that

(3..12) Lg = ~(x - t),

where the differentiation is to be understood as symbolic differentiation.
To illustrate the method for inverting an operator, consider the special

case in which L = dd
2

; then (3.12) becomes
x 2

d2

This equation may be solved by straightforward integration. We know
that the ~-function is the derivative of the Heaviside unit function;
therefore,

d
dx g(x, t) = H(x - t) + (X(t),

where (X(t) is an arbitrary function. Integrating again, we get

(3.14) g (x, t) = JH(x - t) dx + x(X(t) + P(t)

- (x - t)H(x - t) + x(X(t) + P(!),

where f3(t) is another arbitrary function. It can be proved that any
symbolic function which is a solution of (3.13) may be written in the
form (3.14). i' Note that g(x, t) is a continuous, piecewise, differentiable

t L. Schwartz, op. cit.



GREEN'S FUNCTIONS 145

function, and note also that if f(x) is any integrable function which van-
ishes outside a finite interval, then it is easy to show that the function

(3.15) u(x) = fg(x, t)!(t) dt

satisfies the dIfferential equation

(3.16) u" - lex).
We leave the verification to the reader.

By a suitable choice of the functions !X(t) and (J(t) we can in general find
a solution of(3.l6) which satisfies two conditions. Thus, to find a solution
of (3.16) which satisfies the conditions '1;1;(0) '1;1;(1) 0, we proeeed as
follows:

From (3.15) we have

--------rrrIu(~x)l-=-fx (x t)f{t) dt + xf 00 rx(t)f(t) dt + frO fJ(t)f(t) dt.
-00 -00 oJ-oo

Substitute x = 0 and x = 1 in this equation. We get

0= - f~oo tf{t) dt + 0 + f:a:; P(t)f(t) dt

------+Jo--=-f~00 (1 t)f(t) cit +f~00 cx(t)f(t) dt +f~00 fJ(t)f(t) at.

From the first of these equations we see that pet) = tHe - t), and then
from the second we see that !X(t) = - 1 + tH(t), - 00 < t < 1, and
!X(t) = 0 for all other values of t. When these values of !X(t) and f3(t) are
substituted in (3~ 15), the result is

u(x) = f: (x - t)f(t) dt - xf: (1 - t)f(t) dt.

In this case the kernel

(3.17) g(x, t) = (x - t)H(x - t) - x(1 - t), 0 <x, t < 1

also satisfies the boundary conditions

g(O, t) = g(l, t) = O.

In later sections we shall discuss methods for finding the kernel of the
inverse operator in more general cases, and we shall find that, just as in
this case, the kernel as a function of x satisfies the same conditions as those
satisfied by the solution of the differential equation.

PROBLEMS
3.13. Find (X and f1 such that the solution of (3.16) will satisfy the following

Kcts of conditions:

(1) u(O) = u'(O) = 0;

t1
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3.14. Can (X and fJ be found so that the solution of (3.16) will satisfy the
conditions u(O) uO) and u'(O) 'u'O)? Explain. (Hint. Consider the
homogeneous equation corresponding to (3.16).)

The Domain of a Linear Differential Operator

Before we can continue with the problem of inverting a differential
operator L, it is necessary to give a complete definition of L. In this
chapter we shall consider primarily second-order differential operators.
We put

where the coefficients a(x), b(x), and c(x) are continuous functions. In
later sections we shall discuss the meaning of L when the coefficients are
discontinuous functions.

First, we specify the linear vector space ($ of functions on which the
differential operator acts. Since for the most part we shall consider
differential equations over a finite interval only, which for convenience
we take to be the interval (0, 1), we shall take for $ the space of all real-
valued functions which are Lebesgue square integrablet over (0, 1), that
is, cS contains all real functions u(x) defined for 0 < x < 1 such that

J0
1

U(X)2 dx < 00.

If u and v belong to $, we define

(u, v) = J0
1

u(x)v(x) dx.

For some applications, particularly to the theory of Bessel functions, it
is convenient to modify the definitions of the space cS and of the scalar
product by introducing a non-negative weight function w(x). cS is now
the space of all functions u(x) such that

------------fO~1-U:+{X4j)F2wW~(XIl-J)4d~x----<.........--VlOO~,,----------------

and the scalar product becomes

(u, v) = J0
1

u(x)v(x)w(x) dx.

Since the operator L is a differential operator, it cannot be applied to
every function in tS because the function may not be differentiable.
Moreover, even if the function is differentiable, the resuh of applying L

t The reader may consider all integrals to be Riemann integrals. For physical
applications the distinction between Riemann and Lebesgue integrals is unimportant.
The mathematical reason for Lebesgue integrals is that as a consequence $ will be a
complete space. See Stone, Linear Transformations in Hilbert Space and Their AppUca-
lions to Analysis, American Mathematical Society, New York, 1932.
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to it may be a function not in S. For example, u(x) x sin (x-1) is in
3 and is differentiable, but its derivative 'U'(X) sin (x 1) - X 1 cos (x 1)
is not in $. As a consequence of these facts we shall consider L as acting
only on those functions U for which Lu exists and belongs to $.

There is a second requirement for a complete definition of L. We have
seen in the preceding section that putting L~t - u" is not enough because
then the equation

(3.16) u" = f(x)

does not have a unique solution. To make the solution unique we must
reqUIre the solution u to satIsfy a set of two conditIons such as, for
example, the sets of conditions specified in Problem 3.13.

Since different sets of conditions will give different solutions to (3.16),
we see that for the complete definition of L it is necessary to specify not
only that Lu u" but also the conditions satisfied by u. For precise
notation, we should use a different symbol for the operator each time the
conditions are changed. However, for convenience, we shall use the
same letter for the differential operator under all conditions but always
specify in addition the_ conditions that the solutions of L1t - f satisfy.

We take the conditions in the following form:

(3.19) BI(u) = OCIOU(O) + OCllU'(O) + ,8lou(l) + ,811U'(1) = 0,

B 2(u) OC20U(O) + OC2IU'(O) + ,82ou(1) + ,82IU'(1) 0,

where oc's and ,8's are given constants. These conditions include both
initial and boundary conditions. For example, if all oc's and ,8's except
OClO and OC2I are zero, the conditions (3.18) are initial conditions; if all oc's
and {3's except OCIO and (320 are zero, the conditions are boundary condi-
tions. For our purposes the distinction is immaterial. We must assume,
however, in any case that the conditions (3.19) are independent, that is,
there do not exist constants CI and C2 such that

for all functions u(x). Notice that in all cases the conditions (3.19) are
linear and homogeneous; consequently, if UI and U2 satisfy (3.19), then
so will OCUI + fJU 2' where oc and ,8 are arbitrary constants.

We may now define the domain of the operator L. It is the set of all
functions 1t(x) in cS which have a piecewise continuous second derivative,
which satisfy (3.19) and are such that Lu belongs to $.

rt is easy to see that the domain is a linear manifold in $. It is not a
subspace because it is not closed, that IS, there eXIsts a sequence of func-
tions un(x) in the domain which converges to a limit u(x) in (S but the limit

IU(X) is not in the domain. For an example of this see Problem 3.15.
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PROBLEM

3.15. Suppose that the conditions (3.19) reduce to u(O) - U(1) - O. Put
Un(x) =sin (mrx/2) for 0 <x < (n)-\ un(x) = 1for (n)-l < x < 1 - (n)-l, un(x)
= sin [mr(l-x)/2] for 1 - (n)-l < x <1. Show that the sequence Un(x) con­
verges to a limit u(x) in S but that u(O) =1= 0, u(l) =1= O.

The Adjoint Di1ferential Operator, Hermitian Operators

In order to be able to apply the concepts of Chapters 1 and 2 to a
differential operator L, it is necessary to define its adjoint L *. The adjoint
was defined previously by considering the equation

(v, Lu) = (w, u)

and putting w = L*v. For differential operators a similar method will

be used. To illustrate this, suppose L - ~ on the manifold ~ defined

by the conditions u(O) = 2u(1); then by integrating by parts we get

(1 du 11 jl dv
(v, Lu) = Jo vdX dx = vUlo - Jo udx dx

11 dv
= u(1)[v(l) - 2v(O)] - Jo u

ax
dx = (w, u).

We see that L* consists of two parts; a differential operator - d, and
dx

some boundary terms. The differential operator - ~ is called theformal

adjoint to the differential operator ~. The adjoint to L on the manifold ;M

wIll be the formal adJomt - ~ on the manifold defined by the condItIOn

vel) = 2v(O). Now
(v, Lu) = (L*v, u)

where

L*v = _ dv
dx

and where v satisfies the condition vel) = 2v(O).
It is to be noted that in this example L acts on the manifold of square

integrable functions u(x) such that u(O) - 2u(l), but L* acts on the mani-
fold of square integrable functions vex) such that v(O) = v(1)/2. This is
an illustration of the general situation where the manifold on which L *
acts may be dIfferent from the manifold on which L acts. We call one
such manifold the dual of the other.

If L = L*, the differential operator is said to be formally self-adjoint.
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If, in addition, the boundary conditions for Land L* are equivalent, that
is, if they define the same linear manifold, the operator is said to be self-

on the manifold defined by the conditions

u'(O) = 0, u(l) = O.
Then

- u'(1)v(l)e1 + v'(O)u(O) + .f u(e$v" + e$v') dx.

This shows that
d 2 d

L* = eX _ + eX _.

dx2 dx

In order that
(v, Lu) = (L*v, u)

for all u, the boundary conditions that v satisfies must be

v'(O) = 0, v(1) - o.
Since L = L*, the dIfferential operator is formally sel}-adjoint, and, since
the boundary conditions on u(x) and v(x) are the same, the differential
operator is self-adjoint.

The discussion of this section may be summarized in the following

Method. To find the adjoint oj a difj'erential operator L in a space $,
consider the scalar product (v, Lu). With the help of integration by parts,
consider it as the scalar product of u with some vector w, which depends on
~). The transformation from v to w defines the adjoint operator L*. The
boundary conditions on v are determined by the requirement that the termS
resulting from the integration by parts vanish.

I t is to be noted that the form of the boundary conditions on v is not
unique; fOf, if Br(v) Bi(v) 0 are any two boundary conditions on v,
[hen the conditions

rJ.1Bi(v) + rJ.2Bi(v) = y1Bt(v) --1- Y2 Bi(v) = 0

afe completely equivalent to the original ones as long as rJ.IY2 - rJ.2Yl =1= O.
Nevertheless, despite the fact that the boundary condItions are not unique,
it is easy to show that the manifold defined by any set of boundary con-
ditiolls is always the same.
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Note that, if L is defined by (3.18), then its formal adjoint is

d2 d
L*v = - (av) - -(bv) + cv.

dx2 dx

We have

_~(3~.2~0_) J:lvLu - uL*v]f--=d~x_-_-~J~(v~,-'-'-,u)~j:.--- _

where
J(v, u) = avu' - u(av)' + buv.

We shall call 1('1.', u) the conjunct of the functions 'I.' and u. It is clear that
J(v, u) is a linear homogeneous function of v and u and their derivatives.

PROBLEMS

3.16. Find the adjoint differential operator L* and the manifold on which it
acts if

(a) Lu = u" + a(x)u' + b(x)u, where u(O) = u'(l) and u(l) = u'(O);

(b) Lu = - (P(x)u')' + q(x)u, where u(O) = u(l) and u'(O) = u'(l.).

Assume that the scalar product is
[1<U, 2'> -:: Jo----'Uu'Y-t'-Ld"'x'-o--------------

3.17. Suppose that Lu = u", where a1u(O) + b1u'(O) + c1u(l) + d1u'(l)
= 0 and a2u(O) + b2u'(O) + C2U (l) + d2u'(l) = O. Find L* and the manifold
on which it acts if we use the scalar product of Problem 3.16. For what values
of the constants ab bh .• " C2' d2 is the operator L self-adjoint?

3.18. Show that the differential operator
1

Lu = - w(x)(p(x)u')' -+- q(x)u

is formally self-adjoint if the scalar product is

<u, v) = fo
1

u(x)v(x)w(x) dx.

3.19. Show that the differential operator
Lu a(x)u" + b(x)u' + c(x)u

can be identified with the operator considered In Problem 3.18 by putting
q = c, P ICO exp Jb/a dx, w- 1 = - a exp [ - Jb/a dx]. It follows that the general
second-order differential operator is formally self-adjoint if the appropriate
scalar product is used.

3.20. Consider the complex-type scalar product

i1
-

self-adjoint in a space with the above scalar product? Distinguish between the
case where p and q are both rea] functions and the case where p and q are com-
plex functions.
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Self adjoint Second Order Differential Operators

151

Since a large number of the differential equations that occur in mathem­
atical physics are of the second order, we shall give special consideration
to second-order differential operators From Problems 3.18 and 3.19 we
see that any such operator is self adjoint if the appropriate scalar product
is used, therefore, we shall write the operator as follows:

(3.21) Lu = - -~(pu')' + qu,
tV

and we shall assume that the scalar product has w(x) as its weight function.
The reason for the minus sign in the definition of L is that in certain

cases it permits us to consider L as a positive-definite operator. A linear
operator L is called positive-definite if <u, Lu) > 0 for all values of 'tt

except u - o. Now, when L is defined by (3.21), we have

(u, Lu) = f: u[ - ~(pu')' + qu]w dx

----------~~IOI(p'liJ'2 + qW'liJ2) ax - p'liJu'I~.

Consequently, if p > 0, q > 0, w > 0, and if the boundary conditions on
u are such as to make the last term on the right vanish, then L will be a
positive-definite operator.

So far, L is only fonnally self-adjoint. Unde} what conditions will L
be actually self-adjoint? To decide this, consider the difference
(v, Lu) - (Lv, u). We have from (3.20)

(3.22) (v, Lu) - (Lv, u) = lev, u)l: = - p(x)(vu' - uv')I*I-~. _

L will be self-adjoint if the conjunct J vanishes identically when u and v
are in the same manifold. We shall not discuss the most general condi­
tions for which this happens (see Problem 3.17) but instead shall consider
two cases which are importa~t for applications:

(1) A boundary condition is unmixed if it involves t~e values of u and
its derivatives either at x = 0 or at x = 1 but not at both. The typical
unmixed boundary condition is

rt:ou(O) + fJou'(O) - 0

I t is easy to show that if u satisfies an unmixed boundary condition at
;I: ;:.;;;; 0 and an unmixed boundary condition at x = 1, then L is self­
ndjoint.

(2) The boundary conditions are periodic if they have the form:

u(O) - u(l), uP(O) = u'(l).

In this case again it is easy to show that L is self-adjoint.
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TY VY V

Theorem 3.2. If U is any solution of the equation Lu = 0 and if v is any
solution of the equation L *v = 0, the conjunct ofu and v is a constant whose
value depends on u and v.

Here Land L* are formally self-adjoint operators in the full space S.
An immediate consequence of the definition of the conjunct in (3.20) is
the following equation:

________!P (vLu - uL*v) dx = l(v, u)l~p. _
j-et. let.

From the hypothesis on u and v it follows that

_____________l(_v_,_u)J~:--o-;--------------
consequently, the value of J(v, 'u) at x fJ is the same as its value at
x = IX. Since IX and fJ are arbitrary points, this proves that the value of
lev, u) is constant.

Corollary. If L is a formally self-adjoint operator and if Ul and U 2 are
any solutions ofLu -= 0, the conjunct oful andu2 is a constant whose value
depends on the junctions Ul and 'U2•

As an illustration of Theorem 3.2 consider the following differential
equation:

Since this equation is formally self-adjoint, v will also be a solution of it.
The conjunct of v and u is now

lev, u) = vu' - uv'.

Theorem 3.2 states that this expression is constant when u and v are any
two solutions of u" + u = O. For example, if u = sin x and v = cos x,

lev, u) = cos x cos x - sin x (- sin x) = constant.

This is obviously correct because

cos2 X + sin2 x = 1

for all values of x.
We shall prove another

e U iff:. . 1f' O· ·r d f' rf:. () d

ifJ(Uh U2) vanzshesJor some value oJ x such that p{x) * 0, then Ul and U2
are linearly dependent.

From the previous corollary, it follows that the conjunct vanishes for
all values of x; consequently,



This implies that

GREEN'S FUNCTIONS 153

By integration, we find that the ratio Ul/U2 is a constant and, therefore,
Ul and U2 are linearly dependent.

Symbolic Operations

It lnay have been noticed that until now we have considered only
operators with homogeneous boundary conditions. However, in addi-
tion, we wish to treat problems in which the boundary conditions are not
homogeneous, for example, the following: to find a function u(x) such
that 2/;" - f(x) and such that 2/;(0) - a, 2/;(1) - b. This problem can be
treated in many ways. One of the more usual ways is to reduce the
problem to the consideration of an operator with homogeneous boundary
conditions by writing U = Ul + U2, where Ul is the solution of u~ = f(x)
such that u1(O) =---= u1(l) = 0 and U 2 is the solution of u; = 0 such that
'u2(O) = G, u2(1) = b.

We now present another approach which has the advantage of enabling
us to extend the meaning of the operator in a similar way to that in which
we extended the meaning of differentiation in previous sections. Let us
review what was done when we defined symbolic differentiation. We
considered a space of testing functions and then defined the symbolic
derivative of a function by integrating by parts the product of the function
with the ordinary derivative of a testing function. We shall proceed
similarly in the case of a differential operator L.

First we consider an illustrative example. Suppose that

d2
K=-­

dx2

with the boundary conditions u(O) = u(1) = O. It is easily seen that K
is self~adjoint and that :Jr[, the domain of K, is the set of functions u(x)
in $ such that u" exists and belongs to cS and such that u(O) = u(l) = o.
If v belongs to :Jr[ and if w belongs to cS and has a second derivative, we
Nhall write

(Kv, w) - (v, Kw)

and use the left~hand side to define the meaning of the symbolic function
Kw. (It is a symbolic function because w may not belong to the domain
uf K.) We have

<Xv, w) -- fo
l

v"w dx - v'(l)w(l) + v'(O)w(O) fo-
1

'ff-IVlw-A/---j'd~XIro,---

where we made use of the fact that v belongs to :Jr[, the domain of K. It
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is easy to see that the right-hand side of this equation is a linear continuous
functional for functions in 9Jt, and consequently it nray be us~d to define a
symbolic function Kw. We see then that

------f: vKw dx f: vw" dx v'(1)w(I) + v'(O)w(O).

It is convenient to write this equation as

I: -vKw dx = f: v[ - w" + w(1)~'(x - 1) - w(O)~'(x)] dx,

and hence we may put
(3.23) Kw - - w" + w(1 )r5'(x - 1) - w(O)r5'(x)

Notice that this use of the ~-function and its derivative is not justified
by the definitions given before. The previous definitions stated that

(3.24) fcP(x)lJ(x a) dx - cP(a),

fep(x)~'(x - a) dx - - ep'(a),

if x = a is a point inside the interval of integration. We shall now extend
the definition of the ~-function and its derivative by assuming that (3.24)
holds even if x a is an endpoint of the interval of integration. With this
extended definition, the formula (3.23) is justified. It should be remarked
that for some applications it is more convenient to extend the definition
as follows:

Ip(x)~(x - a) dx = tP(a),

--------fef>(x)~'(x a) dx !ef>'(a),

if x = a is an endpoint of the interval of integration. Either extension is
correct as long as it is used consistently. For our purposes the formulas
(3 24) will be more convenient

If w belongs to //r[, the definition of Xli' given in (3.23) reduces to w"
as it should. However, the definition (3.23) is also applicable to functions
not in eGJr[. For example, if w(x) = C, a constant, for 0 < x < 1, then

Kw = cc5'(x - 1) - cc5'(x).

We shall say that Kw as defined by (3.23) is the result of applying the
symbolic operator K to w.

The problem we mentioned previously, namely, to find a function
u(x) such that u" - l(x) and such that u(O) - a, u(1) - b, can now be
formulated as follows:

Find a function u(x) in cS such that

Ku = - I(x) + b~'(x - 1) - a~'(x).

This problem will be solved with the help of the function g(x, t) defined in
(3.17). We found there that

g(x, t) = (x - t)H(x - t) --- :t(1 -- t), 0:-:;: ~;, t"5:, 1
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was a solution of

(3.25) Kg = - C5(x - t).

Multiplying this equation by f(t) and integrating from 0 to 1, we find that
the function

---------e.u~,l~If(t)g(x, t) dt - fox (x - t'}f(t) dx - xI: (1 - t)f(t) dt

is a solution of
--------.£llK:.-W'1J,1'J----=c-~Jf(t)~(x- t) dt - -f(x)

Differentiating (3.25) with respect to t, we get

(3.26) Ka~ = c5'(x - t).ot
By dIfferentIatIng the formula for g(x, t), we see that

8g = - H(x - t)+x.ot
Using (3.26) for t = 1 and t = 0, we have

Ku2 b~'(x 1) a~'(x),

where
U2 = bx - a(x - 1).

Consequently,

U = Ul + U2 = 1: (x - t)f(t) dt - xk (1 - t)f(t) dt + bx - a(x - 1)

is a solution of the equation un = f such that u(O) = a, u(1) = b. The
rcader can easily verify this statement.

The method discussed for extending the set of functions to which K
can be applied can be generalized to apply to an arbitrary differential
operator. Let L be an arbitrary differential operator, 3r[ its domain,
L* the adjoint operator, and let :M* be the domain of L*. We shall say
lhat functions belonging to 3r[* are testing functions for the operator L.
Now, consider a function w(x) belonging to ($ and not necessarily to 3'if.
Wc wish to define Lw. The result may not be a function, but it will be
culled a symbolic function.

If v is a testing function for L, that is, if v belongs to :M*, the scalar
product <L*v, w) has a meaning. This scalar product is a continuous
lincar functional on the space :h[* of testing functions. We put

(3.27) <L*v, w) = <v, Lw),

where Lw is the symbolic function defined by (3.27).
This extended definition (3.27) of the operator enables us to restrict

uurselves to the consideration of operators with only homogeneous
hUll ndary conditions because, as was seen in the case of the operator K,
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any problem ''''lith non-homogeneous boundary conditions may be
changed to a non-holIIogeneous problem involving an operator with
homogeneous boundary conditions. Henceforth, all operators will be
considered in their extended sense.

PROHI,EM

3.21. Find the symbolic meaning of Lw, if L = ::2' with each of the follow-

ing sets of boundary conditions:
(0) u(O) = u'(O) = 0,

(b) 1/"(0) - cxu(O) = u'(1) - ,su(1) = 0,

(c) u'(O) - u'(1) = u(O) - u(l) = O.

Green's Functions and 5-Functions

We have already seen in (3.17) that the inverse of the differential oper­

ator d
2

with the boundary conditions u(O) = u(l) = 0 is the integral
dx2

operator whose kernel is

g(x, t) = (x - t)H(x - t) - x(I - t), 0< x, t< 1.

We shall consider more general differential operators and show that a
similar result holds.

Suppose that L is an ordinary differential operator in x and that 3r[ is
its domain. Suppose that we can find a function g(x, t) such that

(3.28) Lg = l5(x - t).

Note that here L is the symbolic operator applied to g as a function of x.
We shall call g(x, t) the Green's function of the operator L. We can show
that this function g(x, t) is the kernel of the integral operator which inverts
L; for, put

u(x) = fg(x, t)f(t) dt,

then
Lu = fLgf dt = f l5(x - t)f dt = f(x).

This shows that
u = L-1f = fg(x, t)f{t) dt.

Also, since we are using the extended definition of the operator, the
boundary conditions will be automatically satisfied.

The problem of solving (3.28) will be our main concern for the rest of
this chapter. Suppose that L is the following second-order self-adjoint
operator:
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with some homogeneous boundary conditions. Here p(x) and q(x) are
continuous functions in (0, 1) and p(x) -=F °in (0, 1). We solve (3.28)
first in the special case in which q(x) = O. Denote the solution by
go(x, t); then the equation becomes

d f d \
---------~~dx~(jJ J:]t----~bl+<(x.v-==---t-It)-.----------

This can .be integrated immediately. We have

pd& = _ H(x - t) + (X(t)
dx

where (X(t) is a constant of integration, and then

____---=g=--=----o__H ('-----x--------"-ct)r~+ ot(t)ltJ---1xp'H-+~-+-) _+_f3_(t)_, _

where (J(t) is another constant of integration. Note that go(x, t) is a con­
tinuous function of x and that its derivative also is continuous except at
x - t, where it has a jump of magnitude - pet) 1. Note also that .

- d (pd
go) = 0

dx dx

except when x - t.
'lie shall show that the solution g(x, t) in the general ease has properties

similar to those of go(x, t). Put g(x, t) = go(x, t) + k(x, t) in (3.28). We
find

(3.29) Lk - - q(X)Ko(x, t).

In the appendix to this chapter we shall prove the following theorem about
functions differentiable in the ordinary sense:

Theorem 3.A.I. Let p(x), q(x), andj(x) be piecewise continuous functions
Of:1~ in the closed interval (0, 1) and let p(x) be positive in that inter val.
'111en there exists a continuous function u(x) such that pu' exists and is
tontinuous for all x, such that u(O) = u'(O) = 0, and such that

(pu')' qu f
.llu' all values of x for which both sides are continuous functions of x.

Since the right-hand side of (3.29) is a continuous function of x, it

x x x
follows that k(x, t), .vex) ~k, and ;. p ~k are continuous functions for all

values of x; consequently, g(x, t) behaves like go(x, t), that is, g(x, t) is
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continuous and its derivative is continuous except at x t, where it has
a jump of magnitude pet) 1. Since

d ( dgo) d ( dgo)Lg = Lgo + Lk = - - p- + q(x)go + Lk = - - p- ,
----------------t-jd~x~ dx - dx~ dx------

we see that
Lg 0

for all values of x except x = t.
We state these results in

Theorem 3.3. For all values ofx, except x - t, the Green'sfunction satis-
fies the homogeneous equation. When L is given by (3.27), the Green's
function at x = t is continuous, but its derivative has a jump of magnitude
-ljp(t).

Because g is a solution of the differential equation Lg = 0 except for
x = t, it is not a symbolic function but an ordinary function. Since we
are using the extended definition of the operator, it follows that g as a
function of x must satisfy the boundary conditions because, if it did not,
Lg would contain symbolic functions such as ~(x 1) or ~'(x 1).
Henceforth we treat g(x, t) as an ordinary function satisfying the boundary
conditions by which the operator is defined.

Once the Green's function is known, the non-homogeneous equation

(3.30) Lu lex)
with the assigned boundary conditions can be solved. The solution is

(3.31) u(x) = fol
f(t)g(x, t) dt.

The ploof that'U as defined in (3.31) satisfies (3.30) is as follows:

(3.32) Lu = fol
f(t)Lg dt = fol

f(t)CJ(x - t) dt = f(x).

u also satisfies the assigned boundary conditions because g(x, t) as a func­
tion of x satisfies them.

Example I-Green's Function

Let

L

and let the boundary conditions be

u(O) = u'(O) = O.

To find the Green's function g(x, t) we must solve

(3.33) . 6(£6 - t)
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with the conditions
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(3.34) g(O) = gxCO) = o.
As remarked previously, g is a solution of the homogeneous equation

{3.35) d
2
g 0,

except at x = t, where it is continuous and its derivative has a jump of
magnitude -1. For x < t, (3.34) and (3.35) imply that

g - 0,

but for x > t we assume that g is an arbitrary solution of (3.35), namely,

g = ocx + {J.

Since the jump in the derivative of g is -1, we must have

oc- 1;

since g is continuous at x = t, we must have

(J = t.
Finally,

g = 0, x < t

= t - x, x> t
or

(3.36) g(x, t) . - (x - t)H(x - t)

for all values of x. It is obvious that g(x, t) satisfies
(3.33) and (3.34).

Now the solution of

(3.37)

with the conditions

d2u
- - =f(x)

dx2

(3.38) u(O) = u'(O) = 0

may be found. Using (3.31) and (3.36), we have

u(x) = - Jo
1

f(t)(x - t)H(x - t) dt

conditions u(O) = b, u'(O) = a Instead of those in (3.38). We first con-
sider the extended definition of L. If $, the space with which we are deal-
ins, contains all functions of integrable square over the interval (0, 1), then
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dx2

testing function for L, that is, v is any function in the domain of L *. The
extended definition of L acting on u is obtained by putting

(Lu, v) = (u, Lv) = - t uv" dx = - kvu" dx -.(uv' - vu)'l~

= - fo1
vu" dx + bv'(O) - av(O)

------J: vfdx - .f:--rlb<5'(x) + a<5(x)]C---"d,----x-L-;---------

consequently,

(3.39) Lu = f(x) - a<5(x) - b<5'(x).

Put

--------------'bu!t+l-=-~f:f(t)(x t) dt.

We know that LUI = f(x). If we can find a function U2 such that LU2
= - a<5(x) - b<5'(x), then u = U1 + U2 will be a solution of (3.39).
Since

Lg(x, t) - 6(x t),
we see that

_____L_[- ag(x, 0) +b~-~] = - a<l(x) - M'(x).

But g(x, 0) = - x and 8g (x, 0) = 1; consequently,
ot

U2 = ax + b.

Using this result, we find that the solution of(3.37) satisfying the conditioIls
u(O) = b, u'(O) = a is

u = - f: f(t)(x - t) dt + ax + b.

Of course, the fact that U2 = ax + b could have been found directly.
However, we have used the general method in order to illustrate the

technique. The reason for using og instead of og will be made clear later.ot ox
Example 2=Green's Function

Let L again be - :'2 ,but now suppose that the conditions are
x 2

(3.40) u(O) = 0, u(1) = o.
To find the Green's function we Innst solve

6(x t)
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on the manifold defined by the boundary conditions
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g(O, t) = g(1, t) = 0.

We shall illustrate a very useful technique for finding the Green's
function. For x < t, the solution of the homogeneous equation that
satisfies the left boundary condition g(O, t) = °will be proportional to x.
For x > t, the solution of the homogeneous equation that satisfies the
right boundary condition, g(1, t) = 0, will be proportional to 1 - x.

Write
g(x, t) = x, x < t

= 1 - x, x> t.

This is wrong because g(x, t) is not continuous for x = t. The value of
g as x approaches t from below is t, but the value of g as x approaches t

from above is 1 t. Multiply the first expression for g by the value of
the second expression at x = t, and multiply the second expression for g
by the value of the first expression at x = t. Then write

(3.41) g(x, t) - x(l t), x < t

= (1 - x)!, x > t.

This function is continuous at x = t. Because the derivative of this func­
tion for x < t is (1 - t) and the derivative for x > t is - t, the jump in
the derivative at x = t is

- t - (1 - t) = - 1.

Equation (3.41) is therefore the Green's function for the operator - ::2
in the manifold defined by the conditions (3.40). Vie may write the
expression for g(x, t) as follows:

g(x, t) = x(I - t)H(t - x) + (1 - x)tH(x - t)

x + t Ix - tl
---------::::::::=====---=~xr;tt~:-:!.===--------------

2 2

Note that g(x, t) is symmetric in x and t. We shall see later that this is
generally true for the Green's function of a self-adjoint operator.

By differentiation, we may check that (3.41) is actually the solution of
the differential equation. We have

dg 1 1
ch.: = 2 - t - i sgn (x - t)

dx2
~(x f).
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As in the preceding example, 'Ne find that the solution of

d2
- -u =f(x)

dx2 •

with the boundary conditions

u(O) = u(l) = 0
IS

____--=-u_==_fo1/(t) [x(l - t)H(t - x) + (1 - x)tH(x - t)]----",d",----t _

J
ox J'1

----~'-+(~1 =--tXI-J-) 0 tf(t) at + x -x-\--.I(I,---=---4--jt)'-f-1f(l-J.t)l-'<d~t-------

Example 3-Green's Function

Consider the operator

L --
dx2

4

in the manifold defined by

u(O) - u'(1) - o.
The Green's function is found by solving the equation

d2g
(3.42) dx

2
+ 4g = - ~(x - t),

where

(3.43) . g(O, t) = gx (1, t) = O.

We use the same technique as in Example 2. The solutions of the
homogeneous equation corresponding to (3.42) are any linear combina·
tion of sin 2x and cos 2x. We pick two solutions of the hOlnogeneous
equatIOn, one to satisfy the boundary condItIon at zero, the other to satisfy
the boundary condition at unity. We may then write

g(x, t) = sin 2x, x < t

= cos 2(1 - x), x> t.

Since g(x, t) is not continuous for x = t, we multiply the first expression
by the value of the second expression at x = t and also multiply the second
expression by the value of the first at x = t. We get

g(x, t) - sin 2x cos 2(1 - t), x < t

= cos 2(1 - x) sin 2t, x > t.

Now g(x, t) is continuous, but the jump in the magnitude of the derivative
at x t is .

2 sin 2(1 t) sin 2t 2 cos 2t cos 2(1 t)

= - 2 cos 2(t + 1 - t) = - 2 cos 2.
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Since it follows from (3.42) that the jump in the derivative should be 1,
we see that this last fonnula for g(x, t) is still wrong. To correct it, we
must divide it by 2 cos 2. We then have the final and correct results:

g(x, t) - sin 2x cos 2(1 - t)/2 cos 2, x < t

- cos 2(1 - x) sin 21/2 cos 2, x > 1
or

(3.44) ( )
sin 2x cos 2(1 - t) U( )

g x, t = fl.' t - x
2 cos 2

It is easy to show by straightforward differentiation that g(x, t) as given
by (3.44) satIsfies (3.42). We have

2 cos 2 2 cos 2

dg = 2 cos 2x cos 2(1 - t)H(t _ x) + 2 sin 2(1 - x) sin 2tH(x _ t)
dx 2 cos 2 2 cos 2

sin 2x cos 2(1 - 1)<5(1 x) + cos 2(1 - x) sin 2t<5(x t).

The sum of the last two terms is zero because

f(x){)(x - t) = f(t){)(x - t)
and

sin 2x cos 2(1 t)j cos 2(1 x) sin 211
2 cos 2 x=t = 2 cos 2 x=t'

Differentiating the formula for ~:' we find that

cos 2 cos 2

d2g = _ 4 sin 2x cos 2(1 - t)H(t _ x) _ 4 cos 2(1 - x) sin 2tH(x _ t)
dx2 2 cos 2 2 cos 2

cos 2x cos 2(1 - t)(j(t x) + sin 2(1 - x) sin 2t(j(x t)

= - 4g + {)(x - t)[sin 2(1 - x) sin 2t - cos 2x cos 2(1 - t)l
cos 2

4g ~(x t),

which proves that g(x, t) satisfies (3.42).
Suppose that we wish to solve the following non-homogeneous problem:
Find a solution u(x) of the equation

u" + 4u - f(x)
such that

u(O) = a, u'(l) = b.
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Let us first consider the extended definition of L. Clearly, L is self-
adjoint, so that L - L*. Let v be any function in the domain of L; then

= - fol
v(uh + 4u) dx - (uv' - u'v)l~

_________~l vf(x) dx + av'(O) + bv(1).

Consequently,
Lu = f(x) + b~(x - 1) - a~'(x).

Put

________u~l~tf(t)g(x,t) dt,

and we find that LUI = j. Now we need to find a function U2 such that

LU2 = b~(x - 1) - a~'(x),

and then u = Ul + U 2 will be the desired solution.
Since

Lg = ~(x - t),
we see that

_____L_~g(X, 1) + i g l' O)~ - b !l(x - t) - a!l'(x).

From (3.44) we find that

g(x, 1) = sin 2x
2 cos 2

and that
og (x, 0)

ot
cos 2(1 - x).

cos 2 '

consequently,

Finally,

U2 = b sin 2x + a cos 2(1 - x).
2 cos 2 cos 2

11 l' \ d b sin 2x + a cos 2(1 - x)
-----------"urr-=~Jo J1.t)g(x, tJ t + 2 cos 2 cos 2 .

Green's Function if Boundary Conditions are Unmixed

The technique that has been used in the two previous examples can be
applied to any second-order differential operator if the boundary con-
ditions are not mixed, that is, if each boundary condition involves just
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one point of the boundary but not both. A condition such as'u'(O) u(O)
is not mixed, but a condition such as u(1) - u(O) is mixed.

We shall obtain the Green's function for the general second-order
self-adjoint operator

L = - ~(p~)e-----o-+---4----q _

when the domain is defined by the general unmixed boundary conditions

(3.45)

Vie shall assume that p(x) =I- 0 in the interval (0, 1) and that Bl(u) involves
values of u and its derivatives at x = 0 only, whereas B2(u) involves values
of u and its derivatives at x = 1 only.

The Green's function is the solution of

(3.46) (pgx)x - qg(x, t) = - i5(x - t)

with the boundary conditions

(3.47)

Consider the homogeneous equation

(3.48) (pux)x - qu = 0

without any boundary conditions. Suppose that vl(x) and V2(X) are any
two independent solutions of (3.48). Let Wl(X) be a linear combination
of Vl(X) and V2(X) which satisfies the condition

Bl(wl) = O.

Similarly, let W2(x) be a linear combination of v1(x) and v2(x) which
satisfies the condition

B2(w2) = O.

Then we start the construction of the Green's function by writing

g(x, t) = Wl(x), x < t

= W2(X), x > t.

This expression for g(x, t) will satisfy the differential equation (3.46) for
;r, ¥- t and also the boundary conditions (3.47), but it will not satisfy the
continuity or the jump conditions at x = t. To make g(x, t) continuous,
multiply the first expression by the value of the second at x = t and
Inultiply the second expression by the value of the first at x = t so that
we have

(3.49)
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This expression still does not satisfy the jump condition in the derivative at
1'1' . I d" .. b

Wi (t)w (t) - Wi (t)w (t) = _ J(W2, WI)
2 1 1 2 p(t)

while it should be -llp(t). This can be remedied by dividing (3.49) by
J(W2' WI), the conjunct of W2, WI' The final and correct formula is then

(3.50) g(x, t) = lVl(X)W2(t)/J(w2, Wl)' x < t

or, written in another way,

(3.51) g(x, t)

The conjunct in the denominator of these expressions is to be evaluated
at x = t. However, as we have shown in Theorem 3.2,

J(W2, WI) = constant;

consequently, instead of evaluating the conjunct at x = t, we may evaluate
it at any convenient point. For a simple illustration of the usefulness of
this fact, consider Example 3 of the Green's function. There, the con­
junct of cos 2(1 - x) and sin 2x had to be found. Now, since p(x) = 1,
we have

l(cos 2(1 - x), sin 2x) = constant

= 2 cos 2(1 - x) cos 2x - 2 sin 2(1 - x) sin 2x

= 2 cos 2

when we put x =, O. Before, this result was obtained by using the addition
theorem for the cosine, but now it is an immediate consequence of the
properties of the conjunct.

Formulas (3.50) and (3.51) break down if J(W2' WI) O. By the second
corollary to Theorem 3.2 the fact that the conjunct is zero implies that one
function, say W2(X), is a multiple of the other, WI(X). Since BI(WI) = 0
and B2(W2) = 0, it follows that BI(W2) = B2(W2) = O. This means that
W2(x) is a non-trivial solution of the homogeneous equation

(pu')' - qu = 0

with the boundary conditions

(3.45) B1(u) - B2(u) - O.

Consequently, W2(X) is an eigenfunction of the operator L with the bound-
ary conditions (3.45), and the corresponding eigenvalue is A= O.
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The preceding discussion may be summarized in the following theorem:

Theorem 3.4. Let Wl(X) be the solution of

Lw = - (pw')' + qw = 0,

satisfying the unmixed boundary conditions B1(w) = 0, and let W2(X) be the
solution of the same differential equation satisfying the unmixed condition
B2(w) = O. Then the Green's function for L with the boundary conditions
Bl and B2 is given by the following formula:

g(x, t)

where J(W2' WI) is the conjunct of W2 and WI evaluated at any point.

PROBLEMS

3.22. Find the Green's function for L = - ~: in the manifold defined by the

boundary conditions u'(O) = 0, u(l) = O.

dx 2

fold defined by the boundary conditions u(O) = 0, u(l) = O. For what values
of k does the formula break down?

3.24. Find the Green's function for L ~~ in the manifold defined

by the boundary conditions 'U(O) = 0, u'(l) = O.
3.25. Use the Green's function to find a function u(x) such that UN + k 2u

= f(x) and such that u'(O) = u'(l) = O.

3.26. Show that formula (3.51) satisfies the conditions of Theorem 3.3.

Non-homogeneous Boundary Conditions

Consider the problem of finding a solution of Lu = f such that Bl(u)
, a, B2('I1;) b. As we know, the function

Ul = fol
f(t)g(x, t) dt

will be a solution of LUI = f such that Bl(Ul) = 0, B2(Ul) = O. Just as..
before, in order to take into account the non-homogeneous boundary
conditions, we must extend the definition of L.

Suppose that the boundary conditions are of the form:

B](u) = u(O) cos (J. + u'(O) sin (J.,

B2('I1;) '11;(1) cos (J + u'(1) sin {J.

Since L is self-adjoint, any function v in the domain of L is a testing
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function for L. The extended definition of L acting on u is obtained by
putting

(3.52) <Lu, v) = <u, Lv)

------------c:r:---ur-(pv')' + qv] dx

11 11= Jo v[ - (pu')' + qu] dx - p(uv' - u'v) o'
Now

~ (u cos a.. + 1/,' sin a..)(n sin a.. - n' cos a..).

A similar result holds with a.. replaced by fl. We have then that

(3.53) p(uv' 'u'v)\~ p(l)b[v(l) sin fJ v'(l) cos fJ]

--------------=+=F--J.p'+'(Ov-J)~a['v(O) sin a.. - v'(O) cos a..]f-o--.-----­

From (3.52) and (3.53) we see that the extended definition of Lu is this:

Lu = I(x) + bp(1)[~(x - 1) sin fJ + ~'(x - 1) cos fJ]

- ap(O)[t5(x) sin a.. + t5'(x) cos oc].

If we now find a function U2 such that

(3.54) LU2 = bp(l)[~(x - 1) sin fJ + ~'(x - 1) cos fJ]

_________------'a""l'P"-'-'(O~)[~(x)sin oc + ~'(x) cos ocll-'-' _

then U Ul + U2 will be a solution of the problem considered.
Since

Lg(x, t) = ~(x - t),
we see that, if we put

u2 = bp(1)[g(x, 1) sin (3 - og ex, 1) cos (3]
ot

_ ap(O)[g(x, 0) sin oc - 0g (x, 0) cos oc],
ot

oxit will be a solution of (3.54). Note that we cannot use og in the above

!-Lg - b'(x t)ox

formula even though

because

Log *- ~Lg.
ox ox

However, we do have

ot ot
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From Theorem 3.4 we find that
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Finally, we have

Theorem 3.5. If WI and W2 are the solutions of Lw = 0 defined in
Theorem 3.4, then the solution of

- (pu')' + qu = f
which satisfies the conditions

BI(u) - a, B2(u) - b
is

W2(X) [X WI(X) [l
U = -y-Jo wI(t)f(t) dt + J Jx w2(t)f(t) dt

bpE1~WI(X~ .

PROBLEM

3.27. Solve the following equations:
(a) u" =/(x), u'(O) = a, u(l) = b,

(h) u" k 2u f, u(O) u'(O} tl, u(l) b,

(c) - (xu')' - f, u(O) - 0, u'(l) - b.

If the Homogeneous Equation Has a Non-trivial Solution

Suppose that there exists a non zero solution w(x) of the homogeneous
equation

such that

Consider now the problem of finding u(x) such that

(pu:v)x - qu = f(x)
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with the conditions
Bl(u) - B2(u) - O.

In Chapter 1 it was proved that if L is self-adjoint and has a closed range,
and if the homogeneous equation

Lu=O

has a single non-trivial solution w, the non-homogeneous equation

LU=f
has a solution if and only if

<f, w) - o.
We shall show that a similar theorem is valid for differential operators.

Theorem 3.6. Let w(x) be the solution, unique except for a constant
factor, of the self-adjoint homogeneous differential equation

Lw = - (pw')' +qw = 0

such that Bl(w) = B2(w) = 0; then the non-homogeneous equation

(3.55) Lu = f
has a solution satisfying the boundary conditions Bl(u) B2(u) 0 if and
only if

(3.56) f: f(x)w(x) dx = O.

We shall here assume that the boundary conditions are unmixed. The
theorem is valid for arbitrary boundary conditions.

If a function u exists satisfying (3.55) and the boundary conditions,
then, since L is self-adjoint, we have

o (u, Lv,,) <Lu, w) - (f, w),

and this shows that (3.56) is satisfiea. Conversely, if we suppose that
(3.56) is satisfied, we may solve (3.55). Let vex) be a so~ution of

(pux)x qu 0,

and let vex) be independent of w(x). Then, by using the Green's function
technique as illustrated in Example 1, we find that a solution of (3.55)
which satisfies the conditions u(O) = u'(O) = 0, instead of the conditions
R1ft/;) R2(u) 0, is

w(x) !X vex) !x r
------t:(3r.~57ti)---------fjurt(x-x)r-~./I=(w~,~v;:::;-)J~ ft th J(w, v)J~-J-+;,w~d---r.-------

Note that, as shown previously, J(w, v) is constant for all values of x.
We can now show that the function defined by (3.57) will be a solution

of the original problem. It is clear that (3.57) satisfies the differential
equation (3.55). We now investigate the boundary conditions. Since
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the boundary conditions are linear, homogeneous, and unmixed, we may
write them as follows:

B1(u) = rtlU(O) + f31U'(0),

B2(u) cx2u(1) + fJ2u'(1),

where rt" {J" rt2' (J2 are given constants. Since u(x) in (3.57) was con-
structed so that u(O) = u'(O) = 0, it is obvious that B1(u) = O. From
(3.57) we have

(3.58)

because from (3.56)

~(l) J't
u(l) Jew, v) bo--+fi-tt-'-wd~'l',.-------------

-------------Jo,.---l+fwLL--"'d"--ILt'--=--'-O/-O-.------------

If we differentiate (3.57), using condition (3.56), and put x equal to unity,
we obtain

, w'(1) [l
(3.59) U (1) = J(w, v)Jo Iv dT.

Formulas (3.58) and (3.59) together show that

B2(w) fl
B2(u) = J(w, v)Jo Iv dT = 0

because of the assumption on w. We have therefore proved Theorem 3.6,
and we have also shown that if (3.56) is satisfied then the solution of
(3.55) which satisfies the conditions

u(O) = u'(O) = 0

will also satisfy the boundary conditions

B1(u) = B2(u) = O.

We could not use the Green's function technique in this case because
the equation

(DU) - flU = - ~(x - t)
~ xx ~ ,

with the boundary conditions B1(u) = B2(u) = 0, has no solution since

J~(x - t)w(x) dx -:1= 0,

that is, (3.56) is not satisfied. If the right side of the above equation is
modified so that it is orthogonal to w(x), we obtain a problem which can
be solved. This may be done by writing

flU - ~(x t) + wet) f31~(X) + CXl~:(X).
(pux)x ~ - - - - PIW(O) - CXIW'(O)

This equation can be solved in the same way as (3.55) was. The details
will be left to the reader,
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PR,OBLEM

3.28. In each of the following cases find the appropriate orthogonality relation
that f(x) must satisfy in order tb;at the equation may have a solution, and then
find a solution:

(a)
(b)

(c)

(d)

u" = (x), u'(O) = u'(l) = 0;

u" + 7t'>u [(x), u(O) u(l) 0,

(xu')' = f(x), xu'(x)lx=o = 0, u'(1) = 0;

u" - I(x), u(O) - 'It(l), u'(O) - u/(1).

Green's Function for General Boundary Conditions

In the general case where the boundary conditions are mixed, the
Green's function may still be found In a straightforward way. Suppose
that the equation is

(3.60) (pgx}x - qg = - b(x - t),

with the boundary conditions

(3.61) B1(g) - B2(g) - O.

Let vex) and w(x) be any two linearly independent solutions of

(pux}x - qu = o.
Then write

(3.62) g(x, t) = ocv(x) + (3w(x) + v(x)w(t)H(t x) + w(x)v(t)H(x t),
J(w, v)

where oc and (3 are constants which will be determined so that g(x, t)
satisfies the boundary conditions (3.61). The denominator J(w, v) is the
conjunct of wand v at the value t. Note that it cannot be zero for any
value of t because, if it were zero, the functions vex) and w(x) would not
be linearly independent; this will be shown in Problem 3.31.

We show that g(x, t) as defined in (3.62) satisfies the appropriate con-
ditions at x t, namely, that g(x, t) is continuous and its derivative has
a jump of magnitude - 1fp(t). The continuity is obvious. From the
definition of the conjunct it follows that the jump in the derivative at
x = tis

w'(t)1J(t) - 1,'(t)w(t) 1
J(w, v) - - pet)'

Now consider the boundary conditions. Since they are linear and
homogeneous, we have
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where we have used r(x) to represent the function

v(x)w(t)H(t - x) + w(x)v(t)H(x - t)
J(w, v)
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The boundary conditions (3.61) will consequently give us two linear
equations to determine the values of (X and (J. These equations will have
a solution if the determinant

does not vanish.
If the determinant vanishes, either Bl(v) ~ B2(v) = 0, which implies.

that v is an eigenfunction of the operator corresponding to the eigenvalue
zeIO, or there exists a constant c such that

B2(w) + cB2(v) = O.

These equations imply that Bl(w + cv) = B2(w + cv) = 0; hence w + cv
is an eigenfunction of the operator corresponding to the eigenvalue zero.

We see then that if there is no eigenfunction corresponding to the eigen-
value zero, the Green's function exists and is given by (3.62) where (X and fJ
are found by solving (3.61).

PROBLEMS

3.29. Find the Green's function for the operator L = - ~22 - k 2
, with the

periodic boundary conditions
u(O) - 'itO) and u/(O) -- 1.t'(I).

3.30. Explain why it is impossible to find a Green's function for the operator

L = - ::2 - k 2 with the bound~ry conditions u(O) = u(l) and u'(O) = - u'(l).

3.31. Show that if J(w, v) = 0 and if p(x) =f=. 0, and if w(x) and vex) do not
both vanish for the same value of x, then wand v are linearly dependent. (Hint.
If vex) ¥= 0, w(x) ¥= 0, then vfJv - w'/w ImplIes log v = log Cw, where C is a
constant. If vex) =F 0, w(x) = 0, then J(w, v) = 0 implies that w' = 0, and by
differentiation all derivatives of ware. zero.)

Green's Function of the Adjoint Equation

We prove

Theorem 3.7. Let g(x, t) be the Green's function for an operator L on a
manifold defined by certain boundary conditions, and let hex, t) be the
Vreen's function for the adjoint operator L* on the manifold defined by the

... .
g(x, t) = h(t, x).
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In particular, if L is self adjoint, then g(x, t) is a symmetric function of
x and t.

To prove the theorem, we start with the defining relations for the
Green's functions, namely,

(3.63) Lg(x, t) = l5(x - t),

L*h(x, T) = ~(x - T).

From the properties of the adjoint operator, we get

------fh(x, T)L g(x, t) ax = f""-,,L*---I-h&+>(x~, -+T)~gC\<'(xV-o-'+-It)'-"ld>w'x.~------

If we use (3.63), this equation becomes

fh(.l;, T)~(X - t) dx = f 6(x - T)g(X, t) dx,
or

h(t, t) g(t, t).

This last result, with a slight change of notation, is the conclusion of
Theorem 3.7.

PROBLEM

3.32. Verify Theorem 3.7 if L = ~22 + X ~' with the conditions u(O) = u(1)

and u'(O) + u'(l) = O.

Discontinuity Conditions

In applications it is important to consider the solution of linear differ­
ential equations in whjch the coefficients may be discontinuous. This
situation occurs when the properties of the medium vary discontinuously,
for example, the propagatioIl of sound waves through media of different
densIties or the transmission of heat through materials of different thermal
conductivity. The differential equation describes the behavior of the
solution in each medium separately, but it is still necessary to determine
how the solution behaves across the interface of the two media. Usually
the behavior of the solution across the interface, from which we derive
the so-called discontinuity conditions, is determined by physical considera­
tions. For example, in sound propagation the pressure and velocity of
the sound wave must be continuous across the interface; otherwise there
would be an infinite acceleration there. Similarly, in electromagnetic
theory we can shovl that because of Gauss' theorem the tangential com-
ponents of the electric field must be continuous across the interface.
Clearly, these discontinuity conditions are as much a part of the physical
description of the problem as are the differential equations themselve s,
and consequently the question of discontinuity conditions is a physical
and not a mathematical question. However, it is useful to investigate
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u'

what kind of discontinuity conditions are mathematically appIopriate fOI
gIven differentIal equations.

Consider the self-adjoint differential equation

(3.64) Lu - (pu')' - qu - f(x),

where p(x), q(x) and lex) are continuous except for possible jumps at the
points x = Xl' x2, •• " xk • Theorem 3.A.I in the appendix to this chapter
tells us that, despite the jumps, there are solutions of (3.64) such that the
functions u(x) and p(x)u'(x) are continuous throughout the entire interval;
consequently, we may write the discontinuity conditions for this equation
as follows:

U(Xi + 0) = u(x i - 0),

p(xi + O)u'(xi + 0) - P(xi O)u'(xi 0), j - 1, 2, .. " k.

Note that, ifp(x) is continuous at X= Xi' the last condition states that u'(x)

must be continuous at X = Xi'

Instead of using the results of a theorem such as Theorem 3.A.I about
the existence of a solution of the differential equation, we may obtain the
discontinuity conditions by the following heuristic argument. Integrate
(3.64) across a discontinuity, say from X = Xi - c to X = Xi + c, where c
is a small positive quantity. We have

I
Xi+ 8 5X1+8

--------------l"-pu"=-'-I=~- (qu +/) dx.
Xi 8 Xi 8

Since q, u, and f are integrable functions, the right-hand side of this equa­
tion approaches zero as c approaches zero; and therefore pu' is continuous
across Xi' Now write (3.64) in an integral form:

p(O)u'(O) 1 j'x r

p(x) +p(x) In-----o(f--roq'''-u---1+-JI4)----.-.dr+-t.-------

This is valid if p(x) i= O. If we integrate again across Xi we get

uja'i+ 8 = 1Xi+8p(~'(O) dx + 1X~+B!; !x(qu +/) dt.
------= Xi - 8 j-Xi - 8 p(x) j-Xi - 8 ii.X) Jo,.--V'P"----+---.I---+-"""-"--'------

The integrals again approach zero as c approaches zero, and therefore
'u(x) also is continuous at X = Xi'

The same conclusions about the continuity of u(x) and pu' may be
obtained by a different argument. Suppose that u(x) has a jump of
magnitude ex at X = xi; then we can write

u(x) = exH(x - Xi) + vex),

where vex) is continuous at X = Xi' We would now find that Lu is not a
piecewise continuous function but instead contains the derivative of a
delta function, Similarly, if pu' has a jump discontinuity, Lu contains a
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delta function. Since Lu is given as a piecewise continuous function, it
follows that both u andpu' nrust be continuous. We state our conclusions
in the following

Rule. The discontinuity conditions for the operator Lu (pu') I qu
are that both u and put be continuous.

This rule has an important consequence which is based on the concept
of the impedance of a solution. We define the impedance of a solution
'll(x) of the equation Lu = -.f(x) to be the ratio pu'fu. Then the above
rule implies that the impedance is continuous across a discontinUlty.

It should be noted that caution is needed in the application of the above
rule for discontinuity conditions. After all, the discontinuity conditions
are part of the physical problem and cannot be obtained by mathematical
considerations alone. However, if the mathematieal equations are
properly formulated, the rule will give the correct discontinuity conditions.

To understand what is meant by a proper formulation, consider the case
of one-dimensional electromagnetic wave propagation. In general, two
kinds of propagation are possible; they are called transverse electric (IE)
and transverse magnetic (TM) propagation. In both TE and TM
propagation we must solve the equation

U" + m2cf-lu = 0,

where (1) is the frequency of the wave, f-l the magnetIc permeabIlity, and c
the dielectric constant of the medium. Suppose that we are interested in
the transmission of a wave across the interface of two media, for each of
which c has a constant value, but different in each medium, whereas f-l
has the same constant value in both media. For TE propagation the
discontinuity conditions are that u and u' be continuous across the inter-
face, but for TM propagation the discontinuity conditions are that U and
cU' be continuous. This latter case seems to contradict our rule. How­
ever, if we scrutinize the physical situation we observe that for the TE
case the equation

U" + m2cf-lu = 0

is correct even when c varies continuously, but for the TM case the correct
equation if c varies continuously is

1
(su')' + ro2sfJIU O.

c

If we apply the rule to this latter case we get the correct discontinuit y
conditions, namely, U and cU' continuous.

From this illustration we deduce the requiretnent that the mathematical
equations should be so formulated that they are valid for continuous changes
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of the parameters specified in the problem. If they are so formulated, the
rule of this section will give the physically correct discontinuity conditions.

We shall give a final example. Consider the equation

"-/," + cx~(x - xo)"-/' - 0

What is to be understood by this equatIon '! In order "that the term
u(x) times the delta function should make sense, u(x) must be continuous
at x = xo. Integrate the equation from Xo - c to Xo + c. We get

1

$0 I e
____________u'-'----' + cxu(xo) = 0;

Xo e

therefore the Jump In u'(x) at x = Xo must equal - cxu(xo). For values of
x "* xo, the value of the delta function is zero, and the equation reduces to

u" O.

We conclude that the equation is to be interpreted as follows: The
function u is a solution of u" = 0 for all values of x different from xo.
At x = xo, the function u is continuous, but its derivative has a jump of
magnitude - exu(xo). With these specifications the solution of the equa-
tion is completely determined as soon as two boundary conditions are
gIven.

PROBLEMS

3.33. Find the Green's function for Lu - k 2u u"( 00 < X < 00), \,vhen
k is a constant k1 for x < 0, another constant k 2 for x > 0, and when the
boundary conditions are that u vanish at both ± 00.

3.34. Find the general solution of the equation

u" + (X~(x - xo)u = O.

Wave Propagation and Scattering

The ideas of the preceding section have important applications in both
quantum mechanics and electromagnetic theory. Before discussing these
applications, we shall present some of the simpler mathematical aspects of
the theory of wave propagation. Consider the differential equation

(3.65) (pu')' + qu = 0

over the interval ( - 00, (0) and suppose that the functions p(x) and
q(x) approach the constant values Po and %, respectively, as x approaches
pillS infinity. Put k~ qoPo'; then it is shown in Appendix II that as x

approaches infinity, there exists a solution Ul(X) of (3.65) which approaches
elkux and another solution U2(X) of (3.65) which approaches e-ikox• Since
(J.65) is a second-order equation and since u, and U2 are linearly in-
dependent, it follows that any solution u(x) of (3.65) can be expressed
US cx'u,J + f3U iJ.' where cx and fi are constants.
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If a solution u<P(x) of (3.65) is such that p 0, 'Ne shall say that
u(t)(x) behaves like an outgoing wave at plus infinity. The reason for
the terminology is this: If we introduce a time factor e-iwt, the function
u(;)(x)e-iwt behaves at x = 00 like the function a.e i(kox-wt), and this
latter represents a wave disturbance traveling from left to right. Similarly,
a solution 'U(~)(x) of (3.65) such that ex - 0 is said to be an incoming
wave at plus infinity because u(~)(x)e-iwt behaves like pe-i(kox+wt) which
represents a wave disturbance going from right to left.

In an analogous way, If P and q approach constant values PI and qh
respectively, as x approaches - 00, we may define outgoing and incoming
waves at minus infinity. Put kr = qlPi1 . Let WI(X) be that solution of
(3.65) which approaches e-ik1X as x approaches - 00, and let W2(X) be that
solution of (3.65) which approaches eik1X as x approaches 00, then any
solution u(x) of (3.65) may be expressed as (XIWI(X) + ~IW2(X) where (Xl

and PI are constants. If a solution u<g(x) is such that PI = 0, then
u(~)(x)e-iwt behaves like (XIe-i(k1x+wt), and this represents a wave going
from right to left. We shall say u(~)(x) behaves like an outgoing wave
at minus infinity. Similarly, the solution u<:)(x) such that (XI °will
be said to behave like an incoming wave at Blinus infinity, traveling froln
left to right.

These concepts of incoming and outgoing waves are used to treat
physical problems in which a disturbance (for example, a light wave)
arrives from a very large distance (infinity), is affected by near-by con-
ditions (for example, a pane of glass), and is then sent off to a very large
distance (infinity again). The behavior of this light wave might be
treated mathematically in the manne'r shown below.

Assume that a plane wave of light with frequency W/(27T) moves along
the x-axis from x = - 00 to x = + 00, and assume that the glass pane
extends from x = - a to x = a, with the rest of the x-axis representing
air. Let u(x) be the amplitude of the light wave; then u(x) is a solution of
the equation

u" + k 2u = 0,

where k2 = w2/c: for x < - a and x > a, and where k2 = W2/C~ for
- a < x < a. In these formulas, Ca and cg are the velocities of light in
air and glass, respectively.

The function u(x) is not yet completely determined since we have not
specified the boundary conditions that it must satisfy. The boundary
conditions will be obtained from the physical situation, namely, a light
wave comes in from - 00, is affected by the glass pane, and the light wave
then goes to 00. It seems then that we should specify u(x) as a function
which starts out as an incoming wave at - 00 and ends up as an outgoing
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';-'lave at 00. This specification of u(x) would be appropriate if we \-'lere
interested in the cOlnplete history of how an incanting wave is transformed
into an outgoing wave. For many applications, however, we want to
have a description of the behavior of the light wave only after a steady
state has been reached, that is, we assume the light wave is steadily coming
in from - 00 for a time long enough for the physical s'ituation to settle
down to a state of equilibrium. In this steady state we cannot require
that u(x) behave like an incoming wave at - 00 because the glass pane,
besIdes transmitting light to 00, will also reflect some light back to - 00;

consequently, the only boundary condition we can impose on u(x) is
that it behave like an outgoing wave at 00. This boundary condition is
homogeneous and in general will determine u(x) uniquely except for a
multiplicative constant. The value of this constant is usually obtained
from the strength of the source which enlits the light waves.

Problems similar to the one we have described about the light wave
occur in many different branches of physics. We shall present a general
formulation for these problems.

Consider again (3.65) over ( 00, (0). Put v pu'; then we may
write (3.65) as follows.

(3.66) v' = quo

This equation, together with the equation

(3.67) u' = - P IV,

are examples of what Schelkunofft has called transmission-line equations.
We shall list a few situations in which these transmission-line equations
occur.

(1) In the propagation of electric waves along transmission lines, the
coordinate x will represent distance along the line, the quantity u will be
the voltage difference between the transmission lines at x, and the quantity
'V will be the current through the line at X. In this case the coefficients
P I and q are known as the distributed series impedance and the distnbuted
shunt admittance of the line.

(2) The periodic vibrat.ion of strings under constant tension may be
described by (3.66) and (3.67) if we identify ~t as the force on a typical point
of the string at right angles to the string and vas the velocity at that point.
Here, P 1 - r - iwp, q - - iwT 1, where w is 27T times the frequency of
vibration, r is the resistance per unit length, p is the density, and T is the
tension of the string. Note that in this illustration as in the others we
shall assume a time factor of the form e-irot ,

t Schelkunoff, Bell SYJ'tem Technical Journal, vol. XVII, p. 17, 1938.
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(3) The one dimensional motion of periodic sound wavest in a fluid
will be described by (3.66) and (3.67) if we take u as the pressure in the
fluid at any point and v as the velocity at that point. Here, p-l = - iwp,
q = - (pC2)-liw, where p is the density of the fluid and c is the velocity of
sound in the fluid.

(4) Transmission of periodic heat waves 'NiH also be a special case of
(3.66) and (3.67) if we consider u as the temperature and v as the rate of
heat flow. Here P = K and q = - iwc~, where K is the thermal con-
ductivity, (5 is the density, and c the specific heat.

(5) Maxwell's equations reduce to (3.66) and (3.67) in the case of one-
dimensional periodic plane polarized electromagnetic waves if we con­
sider u as the electric intensity and v as the magnetic intensity. We find
p 1 _ iwp" q U iW8, where u, 8, p, are respectively, the conductivity,
dielectric constant, and the magnetic permeability of the medium in which
the waves propagate.

(6) In quantum mechanics,t (3.65) will be the time-independent Schrod­
inger's equation for a particle. We may interpret u as the probability
amplitude and v as the velocity probability amplitude if we put

p = n(im)-l, q = iCE - V)(2/i)-1,

where Ii is Planck's constant divided by 27T, m is the mass and E the total
energy of the particle, and V is the potential energy of the force field' in
which the particle is moving.

Let us return to (3.66) and (3.67) and let us formulate the problem we
wish to consider. We shall assume that p(x) and q(x) are piecewise
constant functions of x. This assumption will enable us to discuss many
interesting physical situations such as, for example, the transmission of
light through a pane of glass. Even when p(x) and q(x) are not piecewise
constant functions, they may be approximated by such functions. Sup­
pose then that

p(x) = Po, - 00 < x < Xl; q(x) - qo, - 00 < X < Xl

where Po, Ph .. " Pn' qo, qh .. " qn are constants. This formulation would
correspond to the problem of wave propagation in n + 1 homogeneous

t Morse, Vibration and Sound, 2nd Edition, p. 222, McGraw-Hill Book Co., New
York, ]948.

:I: Schiff, Quantum Mechanics, pp. 19-21, McGraw-Hill Book Co., New York, 1949.
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media. The region from 00 to XI \ve shall call medium 0, from XI to
X2 medium 1, .. " and frolII Xn to 00 IIIediUIII n. In rIIost physical prob-
lems, as can be seen from the illustrations given above, the p's and q's
will be pure imaginary numbers.

Consider, first, (3.66) and (3.67) for x <xo. They are

If u is eliminated from these equations, we get

v" (qolPo)v.

The general solution of this equation is

v = Aoeikox + Boe-ikox,

where k5 = qo!Po. We shall call ko the propagation constant in medium O.
From (3.68) we find that the value of v corresponding to this expression
for'U is

u = Zo(Aoeikox - Boe-ikox),

where Zo is that square root of (- PoqO)-l which has a positive real part.
We shall call the ratio u/v, which equals

Zo 2 Ok' X < Xo,1 + BoAo-le- '/, oX

the impedance of the wave motion at the point x. The quantity Zo will be
called the characteristic impedance of the medium O.

Similarly, in medium m, (0 < m < n), where X m < x < Xm+h the wave
motion would be described by the equations

(3.69) v = Ameikmx + Bme-ikmx

m~m m

where the propagation constant is given by the formula

(3.70) k~ = qm/Pm,

and the character istic impedance is given by the fonIIula

(3.71) Z;~ = ( - Pmqm)-l.

Formulas (3.69) do not completely specify the wave motion. As we
have seen in the preceding section or, what is equivalent, from physical
consideratIons, a solution of (3.65) must satisfy certain discontinuity
conditions at the interface between the different media, that is, at the
points x = Xh .. " xn . In this case, the discontinuity conditions are
lhat u and v and therefore the impedance ratio u/v be continuous at those
points. The condition that the impedance be continuous at x X m gives
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Put

then the above impedance matching equation becomes
1 - R~-l 1 - R;,
---+-:-- = Zm •
1 + R m - 1 1 + R~

Solving this for R~-l' we find that

(3.73)

where

(3.74) I'm 1 zm.

The quantities R~, R;", and I'm have an important physical significance.
Consider the quantity vex) as defined in (3.69). This formula is composed
of a wave Ameikmx moving to the right and a wave Bme-ikmx moving to the
left. (This is a consequence of our assumption that all functions have a
tIme factor of the form e iwt.) We shall define the reflection coefficient of
the wave as the ratio of the amplitude of the wave moving towards the left
to the amplitude of the wave moving towards the right, namely, the ratio
BmA;;e-2ikmx. We see then that R~ is the reflection coefficient at the left
endpoint of medium m and that R~ is the reflection coefficient at the right
endpoint of medium m.

To understand the significance of I'm' suppose that n = 1; this means
that there are only two media 0 and 1 to consider. Suppose that a wave
eikox starts from - 00. When it meets the discontinuity at x - xI, how
much will be reflected back to - 00 and how much will be transmitted to
medium I? Since we have a left-going and a right-going wave in medium
obut only a right-going wave in medium 1, the wave motion can be written
as follows:

v = e ikox + re2ikoXl e-ikox, x < Xl;

= Te+iklXei(ko-kl)Xl, x > Xl.

u =Zo(eikox - re2ikoXl e-ikox), x < Xl;

The quantity r is the reflection coefficient for a 'Nave going from medium
oto medium 1 and the quantity T is the transmission coefficient.

Expressing the condition that the impedance ratio must be continuous
at X = Xh we see that



GREEN'S FUNCTIONS 183

Solving for r, we get

(3.75) r = 1 - Zl.

1 + Zl

This formula expresses the reflection coefficient for a wave going from
medium 0 to medium 1 in terms of the quantity Zh which is the ratio of the
characteristic impedance for medium 1 to the characteristic impedance
for medium O. Since (3.74) has the same form as (3.75), we conclude
that r m is the reflection coefficient for a Vlave going from medium m 1
to mediunl m if medium m extends to infinity. This conclusion could
have been obtained also from formula (3.73). If medium m extends to
infinity, a wave in medium m will not be reflected and consequently
R~ = O. Substituting this in (3.73), it follows that R~ 1 = r m•

Formulas (3.73) and (3.74) are consequences of one discontinuity con-
dition, namely, the continuity of the impedance ratio. If we use another
discontinuity condition such as the continuity of vex) at x = X m, we get

Am_Ieikm-lXm(1 + R;t,-l) = Ameikmx(I + R;,).

Put

1 + rm
tn 1 +~

then this equation becomes

(3.76) 'L - 1 + R~-l -

The quantity Tm is called the transmission coefficient for a wave going from
medium m - 1 to medium m.

We may summarize the results of our discussion in

Theorem 3.8. The general solution of (3.66) and (3.67) when p(x) and
q(x) are piecewise constant functions of x may be written as follows:

(3.77) v = Aoeikox(l + Rte-2iko(x-Xl») , x < Xl

p-l

= T1T2 ... Tp Ao exp[ikoXl + i~km (Xm+l - Xm)
I

--------t--l--u.ik~pH(XI'l----9'Xf-+p)](1 -t Rpe-2ikp (x-xp)), Xp < x < Xp+l

n-l

- 1\T2 ... TnAOexp [ikoXl + i2:km(Xm+l Xm)
1

·"I'~ Ik (x ..-" X)] X < Xr£ rt' rt •
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Here we have

(3.78)

and

(3.79)

with

(3.80)

(3.81)

Also,

T _ 1 + R;t-l _ 1 + rm

m- l±R; -l±rmR;'

The Jormula Jor u in the mth medium is obtained Jrom the corresponding
formula for 1) by multiplying it with Zm and by changing R; to - R;.

Despite its complicated mathematical appearance, Theorem 3.8 has
the following simple physical interpretation: In the mth region where
Xm < x < Xm+1 there are two waves present, one going to the right, the
other going to the left. To reach this region, the wave must have been
transmitted across the m - 1 regions for which x < Xm . In going across
the jth region, the wave has its amplitude multiplied by T j and its phase
increased by k;(x;+l - x;); consequently, in the mth region, there is a
wave

where

Am = AoTl . . . Tm exp [ikoxl + ikl(x2 - Xl) + .. .+ ikm l(xm - Xm 1)]'----­

going to the right. This wave goes to x - xm+1 and is reflected back,
producing the following wave going to the left:

v_ = R;Am exp [- ikm(x - xm )].

The total wave in the mth region is then the sum of these two waves, and
we have

v = v_ + v+.

We shall apply Theorem 3.8 to a problem similar to the one with which
we started, namely, the behavior of a light wave passing through a pane of
glass. In this case, there are three media present: air, glass, and air again.
We shall consider the transmission ofa wave through three media bounded
by interfaces at x = - a and x = a. We know also that the first and
third media are identical and that they have the propagation constant ko
and characteristic impedance Zo while the medium in the middle has the
propagation constant k1 and the characteristic impedance Z1' If a wave
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starts at 00 in the first medium and travels to the right, there will be
no reftection in the third medium; consequently, R;: 0,. FIom (3.78),
(3.79), and (3.80) we find that

R - R+e4ikla.1 - 1 ,

then, using these values, we get

Since

T2 - 1 + '2,

T - 1 +Rt
1 - 1 + r2e4ikla·

Finally, we obtain the foHowIng formula:

There will be a similar formula for u.
There is another method of solving these problems which may be more

convenient to use in practice. The essence of this method is to work with
trigonometrical solutions of (3.66) and (3.67) instead of exponential
solutions. From (3.73) it follows that, if R~_l = ± 1, then also
R~ = ± 1. From (3.69) we see that, if~ = 1, then v is proportional
to cos km (x - xm ), that is, a cosine wave centered at the interface.
Similarly, if R;;t - - 1, then l' is proportional to sin k rn (x - xnt), that is,
a sine '.vave centered at the interface.

Using (3.76) and (3.74), we deduce the following rule for centered cosine
and sine waves: A centered cosine wave such as v = cos km- 1(x - xm)

for Xm-l < X < xm remains centered to become v = cos kmCx - xm ) for
.em < x < xm+l. A centered sine wave such as v = sin km l(X - xmJ jor
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We shall use these facts to obtain again the solution for the behavior
of a lIght wave passing through a pane of glass. Since there is no reflectIon
in the third medium, the wave there is purely outgoing, and consequently
it may be represented by v = eiko (x-a) = cos ko(x - a) ± i sin ko(x - a),
for x > a. By the above rule we find that v - cos k1(x a) + iZi? sin
k1(x a), a < x < a, where Zl Zl/ZO. To find v in the first medium,
we replace the cosine and sine waves which have been centered at x = a
by cosine and sine waves centered at x = - a as follows:

+ sin 2k1a sin k1(x + a),

sin k1(x - a) = - sin 2k1a cos k1(x + a) + cos 2k1a sin k1(x + a).

Now, applying the rule again, we find that

v = (+ cos 2k1a - iz11 sin 2k]a) cos koex + a)

+ (sin 2k1a + izI 1 cos 2k1a)zl sin ko(x + a), x < - a.

Note that we have used the fact that the relative impedance in going from
the glass to the air is ZO/Z1 = zI1.

We leave it to the reader to show that these formulas are the same as
those obtained previously.

PROBLEM

3.35. Suppose that in a medium with propagation constant ko and character-

(Hint. Suppose that v A eikox + B e-ikox at x 00 and

istic impedance Zo, a slab of thickness 2a is introduced. The slab has propaga­
tion constant k1 and characteristic impedance Z1' Suppose that at - 00 there
is an incoming wave A_eikox and also at + 00 there is an incoming wave
A+e-ikox for v. Find the complete expression for v in the whole region.
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EXISTENCE OF A SOLUTION FOR EQUATION (3.30)

We now wish to justify the statement that the solution of (3.30) is a
continuously differentiable function of x. We shall prove a theorem
which will contain this result as a special case.

Theorem 3.A.I. Let p(x), q(x), and/(x) be piecewise continuous functions
of x in the closed interval (0, 1), and let p(x) be positive in that interval;
then there exists a continuous Junction u(x) such that 'u(O) = ur(O) = 0 and
such that pu' exists and is continuous for all x,. furthermore

(3.A.!) (pu')' - qu = f(x)

for all values of x for which both sides are continuous functions of x.

The proof will illustrate hovy' the Green's function can be used to
transform a differential equation into an integral equation. Equation
(3.A.I) may be written in the form

Lu = (pu')' = qu + f(x) = hex).

Suppose that h(x) were known; ~hen u would be found by using the
Green's function for L, just as the solution of (3.30) was given by (3.31).

Consider the equation defining the Green's function, namely,

(3.A.2) (pg')' = - b(x - t)

with g(O) = g'(O) = O. It can be solved by direct integration. We have
pg' = - H(x - t) + c,

where c, the constant of integration, must be zero, since g'(O) = O. Put

fX ds

a second integration will then give

g(x) = [ret) - r(x)]H(x - t).

Multiply (3. A.2) by - h(t) and integrate from 0 to 1 We find that the
solution of Lu h is

(3.A.3) u = f:1r(x) - r(t)]h(t) dt.

Since h(t) = q(t)u(t) + f(t) is not a known function of t, (3.A.I) becomes
the following integral equation for u(x):

(rlJ . fX(].AA) ~~I(X) ~~:: J() f(l)[r(:t:) rCt)] tit 1
0

q(t)u(t)[r(x) r(t)]---ad'-l-o-1.----
187
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We have thus shown that if (3.A.l) has a solution u(x), this solution
will satisfy the integral equation (3.A.4). We now show the converse.
Suppose that (3.A.4) has a solution u(x). Note that from its definition
rex) is a continuous function; consequently, the right-hand side of (3.A.4),
and therefore also u(x), is a continuous function of x. More, however, is
true When we differentiate the right-hand side of (3.A.4) we find that

u'(x) = J: I(t) dtlp(x) + J: q(t)u(t) dtlp(x).

This equation shows that for all x such that p(x) is continuous, u'(x) exists
and

(3.A.S) p(x)u'(x) = J:/(t) dt + J: q(t)u(t) dt.

Since the right-hand side of this equation is a continuous function of x
for all x, then at the points where p(x) is discontinuous we may defi.ne
u'(x) so that p(x)u'(x) will be continuous everywhere.

Because the integrands in (3.A.5) are piecewise continuous functions of
x, we may differentiate the right-hand side of (3.A.5). We find that

(pu')' ,f(x) + q(x)u(x)

whenever the right-hand side is continuous. This shows that u satisfies
(3.A.l). From (3.A.S) it is clear thatu'(O) = O. This shows that (3.A.4)
is completely equivalent to (3'<'\1.1) and its boundary conditions.

In order to complete the proof of Theorem 3.A.I we need only show that
there exists a solution of (3.A.4). At first glance, this does not seem to be
a simplification since (3.A.4) seems more complicated than the original
equation (3.A.I). However, (3.A.4) is actually much better suited for our
purpose because it contains an integral operator, which is bounded,
whereas (3.A.I) contains a differential operator, which is always unbounded.

The technique which we shall use to prove the existence of a solution
of (3.A.4) is the same as that used in proving Theorem 1.2.

Put

uix) = J:f(t)[r(x) - ret)] dt,

and, for n = 1, 2, .. " put

----1~"1~t+'l_\_'1(XoV-J)L-=---J:f(f)[r(x) - ref)] dt + J: q(f)[r(x) - r(t)p~JI1WI(ty-)-w-d_t.----

We have

un+l(x) - unCx) = f: q(t)[r(x) - r(t)][un(t) - un__l(t)] dt,

and therefore

t.
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In order to estimate the right-hand side we consider the function

fX JX fx ds JX s(3.A.7) R(x) = JI [rex) - ret)] dt = dt Jl -() = -) ds
o 0 t p s 0 pes

where we have used the previously given definition of r(x), namely,

fX ds

and increasing functions of x. Note that

189

fx fX fX ds fX ds fS--- R(t)k[r(x) r(t)] dt - dt R(t)k ( ) - () -'---d-..Htc-lR"W-(tAf,)'GG--.---
.,0 0 t p sOp s 0

Since R(t) is an increasing function of x,

--------J~at R(t)k < R(S)k Io'cr-s -dt--s-R-(s-)-k;--------

consequently, it we use the fact that from (3.A.7), R'(x) = xfp(x), we have

fx rx s ds fx
(3.A.8) JI R(t)k[r(x) - ret)] dt < I. -() R(S)k = JI R'(s) ds R(S)k

o oOps 0

R(X)k+l

k + l'
We can now get an estimate of lun+1(x) - un(x)1 from (3.A.6). First,

we notice that since p(x), q(x), andf(x) are piecewise continuous functions
of x, they must be bounded in absolute value. Also, since p(x) is positive
in the interval (0, 1), it is greater than some fixed constant, and con­
sequently rex) is bounded. Let m be a bound for the functions p(x),
q(x),f(x), and rex); then, from the definition, we have

______IU1(x)~-r(-x-)---r-(t-)]-d-t-<-m-R-(-x-),------

and from (3.A.6) and (3.A.8) we find that

lu2(x) - u1(x)\ < f: Iq(t)l[r(x) - r(t)]mR(t) dt

fx m2R(x)2
--------------<~m~20 R(t)[r(x) r(t)]izdtt-t<::::<~=2=====-=-'-----

Now we use mathematical induction. Suppose that for n = 1, 2, .. " k,
mnR(x)n

Iun(x) un_l(x)I----.:::<~=,~~;--------
n

we shall prove the same result holds for n - k + 1. From (3.A.6) and
(3.A.8) we have

IUk+l(X) - uk(x)~r(x) - r(t)]~m~kR~(~t)l-k-UdH-tlkA--+-!-------

mk+1f mk+1R(x)k+l
--------."...s:'"---=k==t-=-- : R(t)k[r(x) ret)] dt S (k + I)! .
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Consider the infinite series

Ul(X) + [U2(X) - Ul(X)] + [U3(X) - U2(X)] + ....
We have just shown that each term of this series is less in absolute value
than the corresponding term of the series.

r.n2~(X)2 r.n3~(x)3
mR(x) + -+ + . . . 1 + exp [mR(x)]I--.---

21 31

This latter series converges absolutely and uniformly for all values of x
in (0, 1); consequently, the original series converges absolutely and
uniformly to some limit function u(x). Since the nth partial sum of the
original series is unCx), we have

u(x) = lim un(x)

as n approaches infinity.
All that remains to be shown is that u(x) satisfies (3.A.4). Consider

the equation defining un+1(x) and let n approach infinity. We find that

u(x) = I: f(t)[r(x) - ret)] dt + I: q(t)[r(x) - ret)] dt,

which is (3.A.4). Consequently, we have proved Theorem 3.A.I.
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SOLUTIONS FOR LARGE VALUES OF x

We shall consider the general equation

(3.A.9) u" + (k2 + q(x))u - 0;

and we shall show that ifq(x) is small enough at infinity or, more precisely,
If

(3.A.I0) J00 Iq(x)1 dx < 00,

then there exist solutions of (3.A.9) which behave l~ke e±zkx at x = 00.
This last phrase is to be understood in t4e following sense:

There exists a function u1(x) which is a solution of (3.A.9) and is such
that

Similarly, there exists a function u2(x) which is a solution of (3.A.9) and is
such that

lim le ikXu2(x) - 11 = O.
X-rOO

To prove these results substitute u = veikx in (3.A.9) and we get

v" + 2ikv' + qv = O.

If we can now show that this equation has a solution v1(x) which ap­
proaches unity as x goes to infinity, we may-put u1(x) = v1(x)e i

ka: apd we
shall have established the existence of the function u 1(x). Similarly, by
putting u = ve-ikx, we can prove the existence of u2(x).

The method of proof is similar to that used in the proof of Theorem
3.A.I. We write the differential equation in the form

v" + 2ikv' = - qv

and consider the right-hand side as a non-homogeneous term; then by
using the Green's function for the left-hand side we shall obtain an integral
equation for vex).

The appropriate Green's function can be found If we recall that
"(00) = 1 and v'(oo) = O. We have

J
x 1 - e-2ik(X-~)

(3.A.ll) vex) = 1 - 'k q(~)v(~) d~.
00 21

So far, these results were obtained on the assumption that there exists a
function ut(x) and a corresponding function vex). We shall now

191
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construct a function vEx) \vhich satisfies (3.A.ll). Then it can be shown
by differentiation that vex) satisfies the differential equation. Since it
follows from (3.A.II) that v(x) converges to unity as x approaches infinity,
we will have established the existence of u1(x).

The existence of a solution v(x) of (3.A.II) will be established by the
iteration method used in proving Theorem 3.A.I. We put

and we shall show that vn(x) converges to a limit function. We have

I
x 1 - e-2i1c(a:~)

v2(x) = 1 - rfJ 2ik q(~) d~.

Note that because of (3.A.IO) the integral converges for all real values of
k; therefore, v2(x) is bounded for all values of x. By Induction it is easy
to prove in the same way that vn(x) is bounded for all values of x.

Consider the difference vn+1(x) - vn(x). We have
x 1 2ik(a: C)

(3.A.12) vn+1(x) - vn(x) = - f rfJ iik q(~)[ vn(~) - vn l(~)]f--""'d_~--
(n = 2, 3,. ..)

Since lexp { 2ikex ~)}I 1 for all real values of k, 'Ye conclude that

1 f rfJIv2(x) - v1(x)I< k x Iq(~)1 d~.

Put

Q(x) = flqrol d~;
then (3.A.13) becomes

----------lv2(x) - vl(x)I~<~Q----.i-x)~.----------

We now prove by induction that
Q(x)n

(3.A.14) Ivn+1(x) - vn(x)I< 'kn .
n.

Suppose that this inequality holds for n = I, 2, .. " m - I; then from
(3.A.12) we get

which proves (3.A.14).
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(3.A.I5) V1(X) + (V2(X) - V1(X)) + (V3(X) - V2(X)) + ...
converges for ail values of x because each term is less in absolute value
thad the corresponding telIIl of the absolutely convergent series

Vn(X) converges to a limit, which we denote by v(x). It is easy now to
show that ~'(x) satisfies the integral equation (3.A.ll) and that 1)(00) 1.
As mentioned above, the existence of the function u 1(x) is an immediate
consequence of the existence of vex).

We state thIS result as

Theorem 3.A.II. If k is real and if

J(fj Iq(x)1 dx < 00,

there exists a solution u1(x) of the differential equation

u" + (k2 + q)u - 0
such that

There also exists a solution 1L2(X) such that

lim [u2e+ikX - 1] = O.
x-+co

By making suitable transformations we can apply Theorem 3.A.II to a
much wider class of differential equations than its appearance suggests.
For example, consider the differential equation

(3.A.16) (xu')' + (k'x -~) u = o.

]f we put u = x 1/2W into (3.A.16) we get

w" + (k' - v· -:;.1/4) w = o.

From Theorem 3.A.II it is clear that this equation has solutions which
behave at infinity like linear combinations of eikx and e-ikx

; consequently,
the solutions of (3.A.16) behave at infinity like x-l/2 times linear combina­
tions of eikx and e-ikx •

Finally, we state a result which is used in many applications.
Corollary. The equation

- (pu')' - (3wu = 0
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has solutions which have thefollowing asymptotic behaviorfor large positive
values of x:

U r-.I (wp)-1/4 exp [± i{J1/2I_X_(w_l_p_)1_/2_d_x_l, _

where

g - (Wp)1/4, Y - IX (wjp)1/2 dx.

This corollary is proved in Problems 3.37 and 3.38.

PROBLEMS

3.36. Show that when the substitution u - v exp [ 1/2Jb dx] is made in the

:v
totic behavior of 'U for large values of ~~.

differential equation u" + b(x)u' + c(x)u = 0, the resulting equation for v does
not contain any first derivative. Apply this substitution to the equation

'u" +- ~ u' T k 2u = 0, and then by the use of Theorem 3.A.II obtain the asymp-

3.37. Consider the equation - (pu')' +- rxqu - fJwu = 0, where <X and fJ arc

constants. Put v = gu, g = (Wp)l/4, Y = fX (Wlp)1{2 dx, and then show that

d 2v 1 d 2g rxq
d 2 + (Q (3)v 0, where Q d 2 + .

y g y w

3.38. If foo IQl dy < 00, where Qisthefunction defined in Problem 3.37, then

Theorem 3.A.II may be applied to the equation for v. Show that in this case

we have the asymptotic formula 'u 8-1 exp [+ ifJ1/2f-X-t-'(11¥1l,fbIP4")1=/2'"--;d~X{7-l]f.-.------

3.39. Find the behavior of u for large values of x if - u" -- fJx2u + rx'u = O.
(Hint. Use Problem 3.38.)

3.40. Find the behavior of u for large values of 'l: if - ,/1," - (a: + 2)u. (Hint.
Use Problem 3.39 with q - 0, w - :t: + 2.)
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EIGENVALUE PROBLEMS OF

Introduction

In the first chapter we saw that there are two fundamental methods of
solving the linear equation

Lx -m,

where L is the linear operator, m a given vector, and x an unknown vector.
One method, which was exemplified in Chapter 3, is to construct the
inverse operator L -1; then we have

x = L-1m.

The other method is to use the spectral representation of the operator L.
In this method, if we assume that the eigenvectors of L span the space,
we have

x = "ZfJnxn,

where Xn is an eigenvector of L corresponding to the eigenvalue Am the
values of the ~n are known, and those of fJn are unknown. From the
properties of the eigenvectors we have

and therefore

consequently
x = "Zr:J.nxn/An.

In the next chapter we shall learn that a number of partial differential
equations may be solved if we can assign a meaning to functions of an
ordinaty differential operator L. As we have already shown in Chapter 2,
this interpretation may be obtained from the spectral representation of
L as follows:

If ~(t) is an analytic function of t over the spectrum of L and if L has
the spectral representation given above, then

195
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\Ve shall see later that a knowledge ofthis functional calculus for operators
will help us also to obtain the spectral representation of L.

The present chapter will be devoted to a discussion of the spectral
representation theory for ordinary differential operators. The framework
of the theory will be the same as the abstract theory of spectral representa-
tion \vhich was formulated in Chapter 2. However, in the application
of this theory to differential operators, several difficulties appear which
were not present in the application to matrices. The first of these difficul-
ties is the question of the completeness of the eigenvectors, that is, does
the set of eigenvectors of L span the domain ofL? We shall show that in
the case of a self-adjoint differential operator which is defined over a
finite interval and which is such that the operator has no singularities in
the interval, the answer is always yes, the set of eigenvectors do span the
domain of the operator. Co;L

As we have seen in Chapter 2, a number Abelongs to the spectrum of the
linear operator L if the operator L - Adoes not have a bounded inverse.
If Abelongs to the spectrum ofL, there are the two following possibilities:
either ther e exists a non-zero vector x in the space over which L is defined
such that (L - A)X - 0, or no such vector exists. In the first case, A IS
an eigenvalue of L and x is an eigenvector. In the second case, since we
shall show later that a differential operator has no residual spectrum, it
follows that J. is in the continuous spectrum ofL.

The nature of the continuous spectrum is the second main difficulty in
the theory of differential operators. It is important to know when an
operator has a continuous spectrum, and if a continuous spectrum does
exist, how it can be used to give a spectral representation of the operator.
We shall see that these questions can be answered by a consideration of
the Green's function of the operator. First, however, we shall discuss
some examples of operators and the corresponding eigenfunction
expanSIons.

Eigenfunction Expansion-Example 1

Let the operator L be - ::2 and consider it acting on the domain of

twice-differentiable functions u(x) satisfying the boundary conditions

(4.1) u(O) = u(1) = o.

If u(x) is an eigenfunction of L, then u(x) is a solution of



EIGENVALUE PROBLEMS 197

which also satisfies the boundary conditions (4.1). A solution of (4.2)
which satisfies the first condition in (4.1) is

U = sin (Vlx).
For this function to satisfy the second condition in (4.1) we must have

(4.3) sin ,VI 0,

from which it follows that

It - n2n2, n - 1, 2, 3, ....

Note that all the eigenvalues are positive. We shall see later that this
could have been deduced from the general properties of L without solving
(4.3). Note that A = 0 is not an eigenvalue even though it satisfies (4.3)
because the solution of (4.2) and (4.1) corresponding to the value A = 0
is identically zero.

Bsing the values of Aderived above, we find that the eigenfunctions are
Un = sin ifx, n = 1, 2, . . .. It is easy to see that

________________£_1'HUdn(frtX;-t;)U/Ar.m='(frtX;+)-/,jdt;l;X-='-'iirN'bbmn~. _

This equation implies that the eigenfunctions are mutually orthogonal.
We shall show later that the eigenfunctions are complete. Conse­

quently, any arbitrary square integral function f(x) can be expanded in
terms of the eigenfunctions as follows:

(4.4)
00

f(x) = 2: rlm sin m7TX.
1

Using the orthogonality of the eigenfunctions, we find that

rln = 2fo1f(x) sin n7TX dx.

Here the 2 is needed for the normalization of the eigenfunctions since

11
o (sin n7Tx)2 dx = 1/2.

Equation (4.4) is just the Fourier sine series for the function f(x). It
should be pointed out that the equality in (4.4) is to be understood as
equality in the sense of the norm of the space, that is, (4.4) means the
fonowing:

lim frI(x) - ":"'k sin k7TX]
2

dx = O.
-------~t_~~OO~~O ~ 7 ------------

This result also implies that (4.4) can also be understood as an equality
ill the sense of distributions.
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Eigenfunction Expansion Example 2

Again let L be - dd
2

, but now let the domain consist of twice-differen­
X2

tiable functions u(x) such that
(4.5) u(O) = 0, u'(1) = !u(l).

The function u(x) will be an eigenfunction if it is a solution of (4.2) and
also satisfies (4.5). Again we start with u = sin VAX, a solution of (4.2)
which satisfies the first condition of (4.5). In order that thIS functIon
satisfy the second condition in (4.5) we must have

A1/2 cos A1/2 = i sin A1/2

which can be written as

(4.6) tan A1/2 - 22 1/2•

From the general properties of the operator, we can show that It is real
(see the following section). We therefore consider two cases. In the
first case, we assume that Ais a positive real number equal to k2 ; -and then
(4.6) becomes

(4.7) tan k - 2k.

By considering the intersections of the curve r; = tan ~ with the curve
r; = 2~, we see that (4.7) has an infinite number of solutions. In the
second case, we assume that A is a negative real nunlber equal to k2 ;

and then (4.6) becomes

(4.8) tanh k = 2k.

If we investigate the intersection of the curve r; = tanh ~ with the curve
r; = 2;, we find that the only solution of (4.8) is k = O. However, k = 0
implies A = 0, and then it is easy to see that the solution of (4.2) which
satisfies (4.5) is u = 0; consequently, A = 0 is not an eigenvalue.

The eigenvalues are therefore given by A = k; , where kn is anon-zero
solution of (4.7). The eigenfunctions are 'Un sin knx. It is easy to show
that the eIgenfunctions are mutually orthogonal. If lex) is an arbItrary
square integrable function, we have

(4.9) f(x) = LCXn sin knx ,

where

-2 t1
CXn 2k ~f'h(x"")~s~in..----hk~nx~dx~.----------

cos n 0

The factor before the integral is needed to normalize the eigenfunctions.
Formula (4.9) is an example of an expansion in a non-harmonic Fourier

series. In (4.4) we have an expansion in terms of trigonometric functions
of 1TX and of integral multiples of 1TX. This corresponds to the vibration
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of a string where 'Ne have a fundamental tone ~x) and overtones (multi
pIes of 7TX). Since the numbers kn which satisfy (4.7) are not integral
multiples of the smallest of them, the expansion (4.9) is non-harmonic.
We shall see, however, that the general theory handles both cases equally
well.

PROBLEMS

4.1 Find the eigenvalues and the normalized eigenfunctions if L = _ d
2

and the boundary conditions are each of the following:

(a) u(O) = 0, u'(l) = (Xu(l). Distinguish between (X < 1 and (X > 1.

(b) u'(O) = u'(l) = O.

(c) u(O) - u(1), u'(O) - u'(1).

4.2. Find the eigenvalues and the normalized eigenfunctions if Lu = - x(xu')'
and if u(l) = u(2) = O.

General Theory of Eigenfunction Representations

Let L be a differential operator defined over some domain D and let L*
be the adjoint operator defined over the adjoint domain D*. If u is any
function in the domain of L and if v is any function in the domain of L *,
then

(4.10) (v, Lu) (L*v, u) - o.
A non-zero function u(x) in the domain of L is an eigenfunction of L

if there exists a real or complex number Asuch that

(4.11) Lu = Au.

Similarly a function vex) in the domain of L * is an eigenfunction of L * if
there exists a real or complex number A' such that

(4.12) L*v = A'v.

If we subtract the scalar product of (4.11) with v from the scalar product
of (4.12) with u, we find, with the help of (4.10), that

o = <v, Lu) - <L*v, u) = (A - A')<v, u).

If A i= A', this implies that <v, u) = 0 or, in words:

An eigel1function of L corresponding to the eigenvalue A is orthogonal to
,every eigenfunction ofL* which does not correspond to the eigenvalue A.

We now prove a theorem similar to Theorem 2.11.

Theorem 4.1. If A is an eigenvalue of L, then it is also an eigenvalue
o]L*.

The proof of this theorem will depend upon the following result: Either
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there exists fOf any continuous function f(x) a function v(x) in the domain
of L* such that

(L* - A)V =/
or there exists a non-zero solution of

(L* - A)V - 0,

and therefore an eigenfunction of L* corresponding to the value A. This
result implies that either the range of L * - A is dense in the space or the
operator L* A has an eigenfunction; consequently, the differential
operator does not have a residual spectrurIl.

We shall not prove this result, but in Problem 4.3 we indicate how a
proof may be given for the special case where L * is a second-order differ­
ential operator.

Suppose that u(x) is the eigenfunction of L corresponding to the eigen
value A; then (L A)U - O. Let v be any function in D*; then

o = (v, (L - A)U) = «(L* - A)V, u).

Consequently, U is orthogonal to every function of the form (L* - A)V.
If (L* - A)V represented every continuous functionj(x), we would have

a contradiction because (u,/) = 0 for every continuous/(x) would imply
that U = O. Therefore, the other alternative of the result we have just
quoted must hold, that is, there exists an eigenfunction ofL* corresponding
to the value A. This proves the theorem.

Suppose that the operator L is simple in the sense of Chapter 2, page 112,
that is, all eigenvectors of L are of rank one and the eigenvectors span the
space. The case where L is not simple can be treated, just as it was in
Chapter 2, by the introduction of generalized eigenvectors in the space

Let ,lr, ).2' ... be the eigenvalues of L and suppose that UI(X), U2(x) ...
are the corresponding eigenfunctions. By Theorem 4.1 the numbers
AI, Az, ... are also the eigenvalues of L *. Suppose that Vl(X), vz(x) ...
are the corresponding eigenfunctions. Just as in Chapter 2, we may so
normalize the eigenfunctions that

(4.13) (Vj, Uk) = tJ jk

for j, k = 1, 2, . . . Finally, we shall assume that the eigenfunctions of
L or of L* are complete, that is, we shall assume that every square integ-
fable functionf(X) can be expanded in a series of eigenfunctions. "Ve may
find the coefficients in the expansions by using the orthogonality relations
(4.13). Assume that

(4.14) lex) = LCXlcuk(x);

then taking the scalar product of this With Vj(x), we find that
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Note that

Similarly, if we assume that

I(x) "£fJ jV j(x),
we find that

201

Note that now

If L is self-adjoint, then, instead of the eigenfunctions forming a bi-
orthogonal set as indicated in (4.13), they form an orthogonal set, that is,

<uj, uk) = ~jk'

The coefficients in the expansion (4.14) are now given by the formula:

fY..j = <f, u j ).

Just as in Chapter 2, we can show that a real self-adjoint differential
operator can have only real eigenvalues if it acts on a domain which
contains u(x), whenever it contains u(x). We can show also that, if L
is positive-definite, that is, if <u, Lu) > 0 for all non-zero u in D, the
eigenvalues of L must be positive. This follows easily from the definition
of eigenvalue. If A is an eigenvalue and u(x) the corresponding eigen­
function, we have Lu - AU. The scalar product of this with u(x) gives

(4.15)

or

(4.16)

<u, Lu) = A<U, u)

<u,Lu)
<u, u) .

Since both the numerator and the denominator are positive, this shows that
Amust be positive.

For an application of these facts about eigenvalues, consider the operator

1
(4.17) Lu = - - (xu')',

x

where u is in the domain of the operator defined by the boundary con-
ditions

(4.18) lim "xu' 0, u(1) 0.

III order that L be formally self-adjoint, we use the following definition of
the scalar product:

~1<u, v) =~ u(x)v(x)x dx.
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With this definition and the boundary conditions (4.18), we see that L is
self-adjoint. L is also positive-definite because

<u, Lu) = - SOl u(xu')' dx = fo
1

XU'2 dx > 0

by the use of (4.18). We conclude, therefore, that the eigenvalues of L
are positive.

To find the eigenvalues of L we must first find a function which satisfies
(4.18) and is a solution of the differential equation
(4.19) (xu')' + AXU = O.

A solution of this which satisfies the first condition in (4.18) is
u = Jo('V~x), where Jo(t) is Bessel's function of order zero. This function
will not be discussed in detail. For the present all that need be known
about it is that such a function exists and that the solution of (4.] 9) is a

function of the combination Vlx. This can be shown by putting
t = V).x in (4.19).

To satisfy the second condition in (4.18) we must have

Jo(v!I) - 0,

that is, we must find the zeroes of the Bessel function. Since Amust be
positive, we have thus proved that all the zeroes of Jo(t) are real.

PROBLEMS

4.3. Prove that if L * is a second-order differential operator and if [(x) is a
continuous function, there exists either a function vex) such that (L* - A)V = f
or a non-zero function u(x) such that (L* - A)U = O. (Hint. Suppose that
the boundary conditions are Bl(v) = B 2(v) = O. Let Vl and V 2 be linearly inde­
pendent solutions of the differential equation (L* - A)V = 0 but not necessarily
satisfying the boundary conditions. The general solution of (L* - A)'l,' = [,
again not necessarily satisfying the boundary conditions, is v = Vo + (XV l + f3v 2,

where Vo is a particular solution. The application of the boundary conditions
to v will either determine (X and f1 or prove the existence of the function u(x).
Compare Chapter 3, page 172.)

4.4 Show that the operator L ~22 + q(x), with the boundary conditions

either u(O) = u(l) = 0 or u'(O) = u'(l) = 0, is non-negative definite if q(x) is a
non-negative continuous function in (0, 1).

4.5 Show that if there exists a constant C and a function w~.c) such that either
<u, Lu) + C<u, W)2 > 0 or (u, Lu) + C(Lu, W)2 > 0 for all u in the domain of
L, then L can have at most one non-positive eigenvalue. (Hint. Suppose U'I

and U 2 are eigenfunctions ofL corresponding to non-positive eigenfunctions; then
there exists a linear combination of U l and u 2 , which we denote by u, such that
<,u, w) = 0 or (Lu, w) = 0 and (u, Lu) < 0.)

4.6 Show that the operator in Problem 4.1a has at most one non-positive
eigenvalue. (Hint. Use the second condition in Problem 4.5 with w(x) :'"' x.)
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Eigenfunction Expansion Example 3
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We shall now discuss a non-self-adjoint operator which has complex

eigenvalues. Let L be - ~22' with the boundary conditions

(4.20) u(O) = 0, u'(O) = u(l).

The eigenfunctions are solutions of

u" + AU = 0

which satisfy the conditions (4.20). The only solution of the differential
equation which satisfies the fir st condition of (4.20) is a constant multiple
of u = sin (V~x). For this function to satisfy the second condition we
must have

(4.21) Al/2 sin Al/2.

Put A = k2 and A = - k2 successively in (4.21) which then becomes
k = sin k or k = sinh k. By considering the intersections of the line
y = k with the curves y = sin k or y = sinh k, we see that these equations
have only one solution, namely, k - O. This means that (4.21) has only
the one real root, A - O. It would appear that A - 0 is not an eigen­
value since the corresponding solution seems to be u = O. However, if
we put A = 0 in the differential equation, we find that u = x satisfies
both the differential equation and the boundary conditions (4.20) Con-
sequently, A 0 is an eigenvalue, and the corresponding eigenfunction
IS U = x.

We can remove the difficulty that A = 0 does not seem to give an
eigenfunction if we normalize the solution which satisfies the first boundary
condition in (4.20). We chose the solution u - sin "/J.x, but the function
u = C sin Vlx, where C is independent of x, is also a solution. The value
of C may be uniquely determined by the requirement that u satisfy a
non-homogeneous boundary condition at x = O. Any boundary condi-
tion independent of A and independent of the first condition in (4.20)
may be used. For example, we may require u'(O) = 1; then

sin V~x
U= -~­

,,/~

and the eigenvalue equation becomes

sin A1/2
1 = .

A1/2

This equation still has the root A = 0, and u then reduces to x automatic-
ally without the need for again solving the differential equation.

Let us return to the eigenvalue equation (4.21). It can be shown (see
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Problem 4.7) that it must have an infinite number of complex roots which
are given by the asymptotic formula:

'11/2 (2 + I) 2 log (4m + 1}7T ± 'I (4 + I)
A ~ _ m i~ 7T - (4m + 1)7T 1 og m 7T.

The eigenfunctions Uo x, un sin (A~/2x), 1l 1, 2,'" are not
orthogonal since L is only formally self-adjoint and not self-adjoint. If
we assume that every square integrable function I(x) can be expanded in
a series of eigenfunctions as follows:

then the value of r:J.k will be obtained by taking the scalar product of/ex)
with the eigenfunctions of L *. Since L is formally self-adjoint, L* is

::2' but its==domain D* is different from D.

We find D* by an integration by parts. Suppose that u is any function
in D; consequently it will satisfy (4.20). We have

(v, Lu) = - fo
1

vu" dx = [ - vu' + v'u]~ - fo
1

uv" dx

______-----'u~(~I)[v'(l) + v(O)] - u'(1)v(l) - J:-LJ-u- v-"-dx-.----­

Now, in order that (v, Lu) = (u, Lv) whenever v is in D* and u is in D,
the domain D* must be defined by the conditions

v(1) = 0, v'(I) + v(O) = o.
The eigenfunctions ofL* are those functions in D* which satisfy the differ-
ential equation

v" + AV = O.

A solution of this equation which satisfies the first boundary condition
of D* is

sin Al/2(1 - x)
v=-----Al/2 .

The eigenvalue equation is
sin Alj2

1 + A1/2 0,

The eigenfunctions will be normalized by considering the scalar product
of an eigenfunction of L by an eigenfunction of L*. We have

--~J: sin AM2X sin A}/2(1 - x) dx

-----2+--.
1t1

{ cos [A%'2X - A}/2(1 - x)] - cos [A~2X + A:}"2(1 - x)]}dx - O.

if Ak =1= Aj.
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In the last equality, equation (4.21) has been used. This result could
be anticipated from the general theory of the preceding section.

If Ak = Aj ,

1 S~ ~"2 ~ 1 FS ,W2
•

Note also that for A = 0 we have

__________LtJ-1_X( I__x) _dx__I---"-I_6. _

From these formulas it follows that if the eigenfunctions are complete,

where

-------CX=\,oo---~6f: f(x)(1 - xl dx

2 tICXk = 1 'H/2 f(x)vk(x) dx,- cos Ak 0

Eigenfunction Expansion-Example 4

k = I, 2, ....

Consider the following eigenvalue problem: Find solutions of the
differential equation

u" + AU = 0
which satisfy the conditions

u(O) - 0, u'(l) - Au(l).

This is not the usual type of eigenvalue problem because the eigenvalue
appears in the boundary conditions; consequently, we cannot put

dx2

D, the domain of L, depends upon A.
In order to fit this problem into the general framework, we must

enlarge our definition of L. First, we extend our space. Consider the
space of two-colnponent vectors U whose first component is a real twice-
differentiable function u(x) and whose second component is a real number
Ul. We define the scalar product of two vectors U and V as follows:

(4.22) <U, V) = 1+-'u_('---cx)<--v--'--(x-"---)_dX------"-+_U----""l~Vl"___. _

Consider now the subspace D of vectors U such that

(4.23) u(O) = 0 and u(l) = Ul.

Second, if we put

(4.24)



(4.25)
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the eigenvalue problem reduces to the following: find a vector U in D
such that LV - AU.

With this formulation, the problem becomes the same type as those we
have considered, and therefore the results of the previous sections are
applicable.

Let U and V be vectors in D; then vlith the help of (4.24) we find that

+ v(l)u'(l)

fl= - Jo uv" dx + u l v'(1) = <LV, U).

This shows that L is self-adjoint, and therefore all the eigenvalues are real
and the eigenfunctions are orthogonal in the sense of the scalar product
(4.22). Note also that L is positive-definite for

<U, LU) = - fo
l

uu" dx + ulu'(I) = fo
1

U'2 dx > O.

We may use the original formulation to find the eigenvalues and the
eIgenfunctions. Start with

sin ll/2x
U =-:----

Al/2

then, applying the second boundary condition, we find that
cos Al/2 = Al/2 sin Al/2.

Let Ah A2, ••• be the roots of this equation and un(x) = sin Ai:2X the
corresponding solutions of the differential equation. To find an expansion
theorem we must use our general formulation. Let F be a vector in D
and let Un be the vector in D whose first component is un(x) and whose
second component is unCI); then we have the expansion

F = LlXnUnCX),
where

lX
n

(1 + sin2 VAn)/2'

The denominator here is the result of the evaluation of <Un, Un)'
! The expansion given for F is really the expansion of both the function
lex), which is the first component of F, and of the number 6, which is the
second component of F We have

co

I(x) = LlXn sin vInx,
1

co
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vv'here (Xn is given by the formula

Note that CXn can be defined even ifII does not equal f(1). In fact, we
may take f(x) identically zero and11 - 1; then we get

2~ sin YXn sin YAnX.o ~ . _ 0< x < 1,

(4.26) 1 = 2~ sin 2VA,. .
1 1 +sin2 YAn

These formulas can be justified by complex integration. (See Problem
4.8.)

A careful consideration of the convergence question for this problem
is given in a paper by Langer. t

PROBLEMS

4.7 Derive the asymptotic formula given in the text for the roots of
sin A1/ 2 = A1/ 2• (Hint. Put A1/ 2 = ex + if3; then sin ex cosh f3 = ex and
cos ex sinh {3 = f3. If ex is large, the first equation implies f3 large. If fJ is large,

fJ/sinh f3 approaches zero, and therefore ex tn + ~~7T + en, where en approaches

zero. From the first equation, since cos en f""'o..J 1, we have cosh fJ

= (2m + ~)1T, where n = 2m.)

4.8. Justify Formula 4.26 by evaluating

_1_ f sin kx csc k dk
21Ti k - cot k

over a large circle of radius R. (Hint. First, evaluate the integral by residues
and then estimate the integrand on the circle fkj--=o-:LftR-=-I.)~----------

4.9. Find the eigenvalues and the expansion theorem [or the equation
u/' + AU = 0, with the conditions u(O) = °and u'{l) = A1/ 2u{l). (Hint. Put
A = k 2• Use the space of two component vectors U whose elements are functions

11(X), vex); then La ka, where La ( _V~,)e-.-;.)I--- _

Approximating Eigenvalues by Variational Methods

The examples of spectral representation that we have discussed in the
preceding sections have shown that eigenvalues may be found by solving
It transcendental equation such as tan k = k. For an arbitrary second-

t R. E, Langer, To/wku Mathematics Journal, Japan, Vol. 35, 260, 1932.
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order differential operator L, the transcendental equation ~vVhich yields
the eigenvalues can be obtained if two independent solutions of the
homogeneous equation (L - A)u = 0 are known. However, it is im­
portant to have a method for finding the eigenvalues which does not
depend upon a prior knowledge of the solutions of the differential equation,
since in many cases the solutions of the differential equation are known
only approximately. Even when the solutions of the differential equation
are known, a method which does not require the solution of a transcen-
dental equatIOn may be useful. Such a method for calculating the eigen-
values (called the Rayleigh-Ritzlmethod) is given by a variational principle

Let u(x) be any function in the domain D of a self-adjoint operator L
and denote the ratio (u, Lu)/(u, u) by p(u). If u = Un' an eigenfunction
of L, then P(un) Am the corresponding eigenvalue. In general, we do
not know the eigenfunction Un' but if we take' a function u in D which is
"close" to the eigenfunction Un' we hope that the value of p(u) will be
close to An' This is to be expected because p is a continuous functional
ofu.

However, although the error in the value of most functionals is of the
same order of magnitude as the error in the function, for the functional
p(u) the error in its approximation to the eigenvalue is of the second order
of smallness when compared to the error in approximating to the eigen­
functJon. We express this fact by saying that p(u) has a stationary value
(in the sense of the theory of maxima and minima) whenever 'U is an
eigenfunction Un- To prove this fact, suppose that u(x) = uix) + ev(x),
where e is assumed to be a small quantity. Using the fact that L is self­
adjoint and that Un is an eigenfunction, we find that

p u = --------------
(um un) + 2e(un, v) + e2(v, v)

= An + e2{(v, Lv) - An(v, v)} .
<'U,n' Un) + 28<1J'm 'l') + 8 2<2', Ill)

This equation shows that although the error in the eigenfunction, namely,
u - Um is of the order of magnitude e, the error in the eigenvalue, namely,
p - An' is of the order of magnitude e2 •

The converse is aJso true. If p(u) is stationary when u - W, then w
is an eigenfunction of L. To see this, put 'U - Y/ + 8'1); then

<w + ev, W + ev)

(u) = <w + ev, Lw + eLv)
p (w + ev, w + ev)

A + <w, Lw AW> + 2e<v, Lw AW> + e2(v, Lv ltv),

where A is an arbitrary constant. The functional p(u) will be stationary
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(v, Lw - AW) = O.

209

Since this should hold for any function v in the dOluain ofL, it follows that
Lw - AW = 0, that is, W is an eIgenfunctIon of L correspondIng to the
eigenvalue A.

We state

Theorem 4.2. If L IS a self-adjoint operator wah a purely discrete
spectrum and if ).1 is its smallest eigenvalue, the minimum value of p(u) is
AI. This minimum is attained when u = Uh the eigenfunction corre­
sponding to Ai.

Suppose that the eigenvalues of L arranged in order of increasing mag-
nitude are Al < A2 < Aa < . . .. Suppose that the corresponding eigen­
functions are Uh U2, .•• and suppose that they span the space; then for
any function u(x) in the domain of L we have

00

00

Lu 2: J"/COCiUk(X).
1

Because of the orthogonality properties of the eigenfunctions, we get

(u, Lu) = ~AkOC: = Al~OC: + ~(Ak - Al)OC: > Al~OC: = Al<U, u);

consequently,

(u) = <u, Lu) > A .
p <) - 1U,U

This inequality proves the theorem. Note that if (Xi = 1, OC2 - "8

0, then pAl.

dx2

integration by parts shows that

J01uu" dx J: u'2 dx
P i1 11.------------- 0 u 2 dx fO------,,-,u~2---,dfflX.------------

Now assume that u =;;: x(I - x), a function which is obviously in the
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domain of the operator. 'Ve find p 10, which is not a bad approxim-
ation to the first eigenvalue Al - 7T2 • To get a better approximation, we
must use a more complicated "trial" function for u. For example, assume
that

u = ClX(l - x) + x3(1 - x) = x(l - x)(oc + x2),

where IX is a parameter to be chosen later so that p wIll be a minimum. We
find that

p

This expression is stationary when IX = - 113 or IX = - 28/3 approx-
imately For the latter value of IX we find p = 9.984, which is a better
approximation to 7T2 than the previous value of p was.

When we substitute IX = - 1/3 in the expression for p, we find p = 39.7.
This is a good approximation to A2 = 47T2 • The reason why this value of
IX gives an approximation to A2 instead of Al is that the trial function u has
a zero inside the interval (0, 1) and is therefore "close" to U2, the second
eigenfunction.

Instead of applying Theorem 4.2 directly to L, we may apply it to the
inverse operator L 1. If Lu AU, then clearly U AL 1U , consequently
I/A: is an eigenvalue for L lU. We have then that (u, L lu>/(u, u) has a
maximum value equal to A-I, and therefore the minimum value of
(u, u)/(u, L-1u) is AI' Using a generalized form of the Schwarz in­
equality (see Chapter 2, Problem 2 34), we can show (see Problem 4.10)
that, if we put p' (u, u)/(u, L -IU), then p' < p. Since ).1 < p, it
follows that of the two approximations p and p', p' is closer to AI' For
example, in the problem we have discussed above we have

_______L_Iu__C'----l_----=-.x)f: ~u d~ ni:l:-1 _(l__~'____)u_d_~_. _

Again, put u = x(l - x), and we find that

p' = 9~~ = 9.882,

while the correct value is 7T2 9.8696.
Eigenfunction Expansion, Example 4, will serve as a final illustration of

Theorem 4.2. We have

-----------J~uu" dx + u1u'(l) Llt-'_u_'2_d_x _
p = = 1 •

------------4J-----f~U2 dx + u~ fo u2dx + u(I)2
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As a trial function take 'U w; then we find that

p = 3/4

as an approximation to Ah whereas the value of A, correct to two decimal
places, is O.74.

So far, we have obtained only an upper bound to the value of AI' We
shall now present some methods for obtaining a lower bound for AI'
Suppose that L is a self-adjoint operator with a purely discrete spectrum
containing the eigenvalues ;1 < 22< ;8 < ... and suppose that the
corresponding normalized eigenfunctions 'Uh 'U2,' •• span the space.
Consider the sum

00

S(ex) = >: (Ak - ex)2 ex;,
1

where (x, <XI, (X2, ••• are arbitrary rea] numbers. If ex. is closer to the
eigenvalue Al than to any other eigenvalue, we have (Ak - ex)2 > (AI - ex)2,
and consequently

00

S(ex) > (AI ex)2Zex; .

ex = ~ex; .

In this case S(ex) reduces to ~A;ex; - ex2~ex;, and we obtain the estimate

CAl ,,)2 < "2:.;;:; ,,2.
exk

If we denote the right-hand side of this inequality by E2, we get

ex - E < Al < ex + E.

1

This inequality will be used to give an estimate for Ah but first we see that
the left-hand side will be a minimum if ex is chosen such that ~(Ak - ex)ex;
- 0, that is, if

ThIS result gives us both an upper and a lower bound for Ah but there
remains the question of how to evaluate the sums occurring in the defin­
ition of E2. Suppose that u is any function in the domain ofL and suppose
that u = ~exkuk; then Lu = ~Akexkuk' Because the eigenfunctions form
Ull orthonormal set, we have <u, u) "£rx;, <u, Lu) "£Akrx;, and
<L'lf, Lu) - YJ.;ex;. We see then that ex was chosen equal to "J:,jAkex:rf~ex:

::..:: (u, Lu)/(u, u) = p(u). We find also that E2 = - p2 + (Lu, Lu)/
(I.(" u). Substituting these results in the previously obtained inequalities
we have the following bounds for )'1:

(4.27) p - V' -=. p2 + (Lu, Lu)/(u, u) < Al
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Note that if we start with at closer to )'k than to any other eigenvalue, a
procedure similar to that used above will give upper and lower bounds for
Ako

We shall illustrate the use of (4.27) by considering the operator

We find that

and then E2 = 120 - 100 = 20; consequently,

10 - v20< Al < 10 + v20.

This upper bound is worse than the one we had obtained previously,
namely, 10, and the lower bound is quite far from the correct value.
We shall present a method, essentially due to Kato,t for obtaining a better
lower bound to the value of AI' This method makes use of a lower bound
for 22, a lower bound which can be found by the use of an inequality for
)'2 analogous to (4.27).

Suppose that ex and {J are real numbers such that Al < ex < {J < A2; then
00

L: (Ak - ex)(Ak - {:1)ex: > 0
1

for any real numbers exh ex2, • ". Put Ak - ex = Ak - P + P - ex and
Ak - {J = Ak - P + P - (J, where P = ~Akexi /~exi •
We get

or

Since this inequality holds for any number ex larger than Ah it holds also
for AI' Using the previous notation, we see that

(4.28)
t1 '-p

where fJ is any nunrber less than A2 and larger than p.
Inequality (4.28) gives the desired lower bound for AI. We illustrate its

use by considering again the first example of this section on page 209.
With the assumption u = x(1 - x) we found p = 10, E2 = 120 - 100 = 20.

t Journal Physical Society, Japan, Vol. 4, 334, 1949.
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We also found that 39.7 is an approximation to A2' Since {3 must be less
than A2' put fJ - 35, say, then inequality (4.28) gives

20
Al > 10 - 35 _ 10 = 9.2,

which is quite close to the correct value of AI'

PROBLEMS
4.10. Prove that p' = <u, u>1<u, L -lU>is not greater than p = <u, Lu>1<u, u >.

(Hint. Use Problem 2.34 with x = u, y = L -lU, and A = L.)

4.11. Find an upper and a lower bound for the first zero of Jo(t) 0 by

estimating the lowest eigenvalue for Lu = - ! (xu')', with the conditions u(O)
x

regular and u(1) O.

Green's Function and Spectral Representation

Our main purpose in this chapter is not to discuss the eigenvalues and
eigenfunctions for their own sakes, but to discuss how the eigenfunctions
can be used to give the spectral representation. We first proceed in a
purely formal manner. Let L be a simple operator and suppose that
Ub U2, ••• are its eigepfunctions and AI, .1.2, ••• the corresponding eigen­
values. We shall also suppose that the eigenfunctions are complete and
therefore every square integrable function u(x) may be expanded as
follows:

where

Here 'l'k(x), k - 1, 2, ... are the eigenfunctions of L*. Now

Lu(x) = ~ockAkuk(x);

and if f( t) is any function of t analytic in a region containing the eigen­
values, we define

1
Suppose thatf(t) =-'1-; then

A - t

(4.29)

'fhe left-hand side of this equation can be expressed in terms of the Green's
function for the differential operator L - A. To see this, put w(x)

(A - L) lu(X); then we have (L - A)W - - u. If G(x, ~, A) is the
Green's function for the operator L - A, we have shown that

w = - fG(x, ~, A)U(~) d~;
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consequently,
1
~- u(x) = - fG(x, ;, A)U(;) d;.
A-L

We shall use thi s fact later.
Suppose that we integrate (4.29) over a large circle of radius R in the

complex A-plane. Vie get

Now as the radius of the circle approaches infinity, the right-hand side
includes more and more residues. We have then

(4.30) lim ~1 dA ~u(x) = - ~~kuix) = - u(x).
B=?oo 21Tl !----jLh---~h.--------------------

This result which connecis the Green's function WIth the eIgenfunctions
was obtained by making a great many assumptions, such as that the eigen­
functions were known and that they were complete. In practice, we try
to work it backwards. We start with a knowledge of the Green's function
for the operator LA; then we consider the following integral in the
complex A-plane:

1 1 dA 1 1 J
2TTi :r L _ Au(x) = 2TTi:r dA G(x,;, A)U(;) d;;

and then, by evaluating It In terms of residues, we hope to get (4.30), that

U(x).

is, an expansion of u(x) in terms of the eigenfunctions of L. To prove the
validity of (4.30) it is necessary to prove that

1. 1 # dA ()_________-=I=m=-------;;-.--~ U x
R~oo 2TTl L - A

In later sections we shall prove an equivalent formula, namely,

(4.31) lim 2~1 G(x, ;, A) dA = - !5(x - ;).
R~oo TTl :r

After (4.31) has been proved, "''Ie simplify the integral by shifting the path
of integration. We can show that G(x, ;, A) is an analytic function of ;I.
except for pole and branch-point singularities; consequently, the integral
in (4.31) reduces to a sum of residues at the poles plus integrals along the
branch cuts.

We thus have an expansion of l5(x ~) as a sum of terms plus an
int~gral. The sum will correspond to the discrete spectrum and the
integral will correspond to the continuous spectrum. We can obtain It

similar expansion of a continuous function u(x) if we multiply the expan..
sion of !5(x - ;) by u(;) and integrate with respect to ~. A few examples
will clarify the procedure.
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Spectral Representation Examples

215

sin Vl(l - x) sin '/l~

USIng the methods of the precedIng sectIon, we shall obtaIn the eigen­
function expansions considered previously in Examples 1 to 4. In
Example 1, the Green's function is that solution of

- dx2 - AG = 6(x - ~)

which satisfies the boundary conditions

G(O, ~, A) - G(l, ~, A) - o.
By the methods of Chapter 3 we find that

G = sin vIx sin Vi(1 - ~) x < ~
VA sin VA '

(4.32)

x>~.
VA sin VA

It should be noticed that A = 0 is neither a pole nor a branch point of G.
This may be seen by considering the series expansion of G in the neighbor-
hood of A O. Now

_1_1 G dA = _11 dA [Sin v2.x sin V~(1 - ~)H(~ - x)
21Ti j 21Ti j VA sin VA

+ sin Vl(1 - x) sin VA~H(0l: ~)l--
VA sin VA J

= - 2 L sin n1TX sin n1T~[H(~ - x) + H(x - ~)].
n9

1T
2<R

We shall prove in Problem 4.15 that the contour integral approaches
- b(x - ~) as R ~ 00;. consequently, we have

00

2Lsin n1TX sin n1T~ = 15(x - ~).
1

I f we multiply this formula by f(~) and integrate, we get
00

f(x) = 2L sin n1TX Jo1
f(~) sin ~1T~ d~,

1

which is the same as (4.4).
In Eigenfunction Expansions, Example 2, a similar treatment will yield

(4.9). We leave the details to the reader.
In Eigenfunction Expansion, Example 3, the Green's function G is the

solution of

dx2
)..0 ~(Ol: ~),
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which satisfies the boundary conditions

G(O, ~, A) = GiO, ~, A) - G(l, ~, A) = 0.

U sing the methods of Chapter 3, we find that

Again, A = °is not a branch-point but it is a pole of the first term on the
ri'ght-hand side. If we integrate G over a large circle, the second term
will contribute nothing since it has no singularities in the finite part of
the A-plane. The integral of the first term will give the following expan­
sion of the t5-function:

,,(x $) 63:(1 $) + 22; sin v~x sin 'Vl..p tJ

If we multiply this by f(~) and integrate from °to 1, we shall get for f(x)
an expansion which is the same as that obtained previously in Example 3.

Consider now Example 4. The Green's function, as always, is the
~ernel of the integral operator that inverts the differential operator.
Since the differential operator here is acting on the components of a two­
dimensional vector space, it is really a two by two matrix differentjal
operator; consequently, the Green's functions will have to be a two by
two matrix G. Each column of G will be an element of our space, that
is, its first component will be a function of x and its second component
will be independent of x; consequently, we may define G as follows:

Here primes denote differentiation with respect to x. G is the solution of
the matrix equation

-------(l-LL.--=<=---A-,A)J-u:G---=--je<x;-~) ~)f-.-'--------

and G also satisfies the following boundary conditions:

gl(O, ~, A) = g3(0, A) = 0,

gl(l, ~, it) g2(~' it) - ga(l, It) g4(it) - O.

These conditions imply that each column of G, considered as a function
of x, belongs to the domain of the operator L.
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')Ie find that

(
t A) = VA sin VA~

gl x, ~, A / ~ / ~ /

A(cos v A - v Asin VA)

________----j.[cos VA(l - x) - vA. sin VA.(1 - x)] H(x - ;),

v). (cos "/). V). sin V).)

(
1) _ sin v1

g4 A - . •

"II. (cos "ii, VI, sin -\/1,)

It is clear that these functions have neither a pole nor a branch-point
singularity at A = 0, but they do have simple poles at the zeroes of the
function cos V~ - V;' sin V~. Evaluating the contour integral

-----------------L.2m~J,-.iif G dA

o

by means of residues, we obtain the following result:

sin VAnX sin VAn~ sin VAn sin VAnX

2'" sin V~~ sin yIn 2'" sin2 V~
k 1+ sin2 VAn k 1 + sin2 VAn

The result obtained agrees with those obtained previously. Note that
in the evaluatIon we have replaced VAn by cot VAn wherever it appears.

PROBLEM

4.12. Find the Green's matrix for the operator considered in Problem 4.9.
Use complex integration to obtain the expansion theorem for two arbitrary
functions f(x) and g(x).

Continuous Spectrum-Example

We shall consider one final example in order to illustrate the conse-
quences of the presence of a branch cut in the integral. Suppose that L is

ltgain - ;2 and that the domain D is the set of all twice-differentiable
x 2

functions u(x), 0 S x < 00, such that

u(O) = 0, fooo

u2 dx < 00.
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The Green's function G is now that solution of the equation

(4.34) - G" - ).G = C5(x - ~)

which satisfies the conditions

G(O,~, A) = 0, tft--oo_G_2_d_x_<_oo_. _

If Ais complex, these conditions will determine a unique Green's function.
If A is real, however, a solution of (4.33) satisfying the above conditions
does not exist. This difficulty is due to the fact that infinity is a singular
point of the differential equation.

We have seen in the preceding chapter that at such singular points an

N h . sin VAX . I . f . f '] . h b hote t at SInce v~ IS an ana ytIc unctIOn 0 It. WIt out a ranc

point at A = 0, it is immaterial how the square root of A is defined; but
since the function eiv'k has a branch point at A = 0, we must specify the
sign of the square root. In order that G as written above should
vanish for large real positive values of X, when Ais complex, the imaginary
part of the square root of A must be positive. This can be done if we
assume 0 < arg A< 277 and then 0 < arg A;1/2 < 77. We could just as
well assume - 277 < arg A < 0 and - 77 < arg Al!2 < °and then use
e-iv'Xx in the Green's function; or we might assume - 77 < arg A< '1T,

and then G would contain e+iv'k for arg A> 0, but it would contain
e-iyIx for arg It < O. The simplest way is to assume 0 < arg ). < 21f, and
we shall do so.

Now consider

2~i f G dA.

Since G has a branch point at A - 0, we introduce a branch cut in the
complex A-plane along the positive real axis and then take the contour
as a large circle not crossing the branch cut (Fig. 4.1 ). We shall show
later that the contour integral approaches - c5(x - ~) as the radius of tho
circle approaches infinity. Since, by Cauchy's theorem, the integral O'lor

the circle is equal to the integral over the branch cut (Fig. 4.2) we have

- d(x - ~) = ~ r G dA.
21Tl Jcd---------------

Put A= k2 , k > 0, dA = 2k dk; then on the upper side of the cut VA Ie
but on the lower side v~ = - k; consequently,
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b(x -~) = ~~2H(~ - x>{J;Sinkxeik< dk + J= sin kx e-ikl dk}--­
________+_2_R_(X__~_){J: sin k~ eikx dk +J: sin k~ e-ik

• dk}]1--__

2 i oo
-------~-~~ sin kx sin k~ dk.

Tr 0

This is a well-known result since it is another formulation of the Fourier
sine transform theorem. We shaIl now InvestIgate the behavior of the

X-plane

--~---c

Fig. 4.1 Fig. 4.2

contour integral along the circle of radius R. Again, put A = k 2, and
the circle in the Jc-plane becOIIles a senlicircle of radius Rl/2 in the upper
half of the k-plane. The integral is now

2~i [f~ sin kxeikf; dk H(~ - x) + f~ 2 sin k~eikx dk H(x - ~)J

----------=~~2=~d[H(~ x)!"", eik!;(eikx e ikx) dk

+ H(x - ~)f"",eikx(eikf; - e-ikf;) dk]

_____~~=-~l=_jrr eik(x+f;) dk J eik/x-f;1 dkJ-----------
2Trt:1~ j~

= - _1 [_ foo eik(x+f;) dk + foo eik(x-f;) dkJ.
2Tr -00 -00

The integrals here are obviously non-convergent. This is to be expected
since the result we are looking for is not a function but a symbolic function
(~(x - ~); consequently, we must consider the integrals as defining a
symbolic function. To obtain the symbolic function, let us consider the
inlegral

------------jl'h(x...-1)l-.~·c.;::~,foo 00 e'ikx dk lim
l~-+oo
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applied to a testing function t/>(x) which is continuous, has a continuous
derivative, and vanishes outside a finite interval. We define

fOO dx
-------------='-iltlim~2 ~(x) sin Rx .

-00 x

In Problem 4.13 we shall show that the limit is 2'T1'4>(0); therefore I(x)

(4.35) f~oo eikx dx = 2'T1'b(x).

Applying this result to the evaluation of the contour integral, we find
that the contour integral is b(x + ~) - b(x - ~). This result implies that
if C/>(X) is a testing function as defined above, then

lim ~! dA foo G(x,~, A) 1> (~d~ = foo [b(x + ~) - b(x - ~)]4>(~) d~R-,;oo 2'T1'1 Y -00 -00

- 4>(- x) - 4>(X).
We have shown above that the contour Integral may be reduced to an
integral over the k-axis; consequently, we have

l' 2 ~R foo________~]mLLL--=-=- sin kx dk -~sicHn__Ak__~--{lc/>I\_«~'i_I)l_(,d~~--------
'TI' 0 -00

r 1 fR foo= 1m 7T -R sin kx dk -00 sin k~ 4>(~) d~

- ~(x) c/>( x).

Suppose that we restrict ourselves to testing functions which are odd, that
is, 4>( - x) = - 4>(x); then this formula gives

r 2 f'R 100

-----------t11H"'lIDft-=-xr_R sin kx dk fO-----"S'-"ir"-lklr:~~4>H(~a) ~d~~~-'-J2c/>*(h1x.-\-),-------

when 4>(x) is an odd function of x. Finally, since the integral over ~ is
only from 0 to 00, we may assume 4>(~) to be defined only over 0 to 00 and
then extend it to an odd function by putting c/>( - ~ = - c/>(~. In this
way '.ve arrive at the following result:

1· 2 iR i oo
1m - sin kx dk sin k~ 4>(~) d~ = ep(x)

'TI' 0 0

if 1>(x) is a continuous and continuously differentiable function over
0< x < 00, if 4>(0) - 0, and if ep(x) vanishes identically outside a finite
interval.
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This formula is kno\vn as the Fourier sine integral theorem. If we de-
fine 'ljJ(k) , the Fourier sine transform of ¢(x), by the formula

fooo
sin k~ ep(~) d~ = 1p(k), .

we have the inverse formula

2 tOO---------~ -------Jjtp~(klr')Hs!11iI'l-l klr'x-r-dTfjklr---.c/>.kl(~x+-),---------
7T 0

where both ep(x) and 1p(k) are defined over the half-infinite interval from
Oto 00.

It is worth noting that we could have obtained the Fourier sine transform
theorem from the formula

1 .
lim 27Ti f G dA = ~(x + ~) - ~(x - ~)

by reasoning as follows: Since the domain of the operator L is restricted
to functions u(x) which are defined over the interval 0 < x < 00, and
since the same is true for u(~), it follows that ~(x +~) will contribute
zero when applied to a testing function; consequently, we have

______------t".--1~.1 G dA = ~J'<XJ sin kx sin k~ dk = ~(x - ~)
27Tlj 7T 0

for testing functions defined over (0, 00).

PRQBI,EMS

4.13. If cf>(x) is continuous, has a continuous derivative, and vanishes outside

a finite interval, the limit of foo ep(x) sin Rx dx as R~ 00 is 1Tep(O). (Hint.
-00 x

----f sinRx
ep(O) x dx 1Tep(O). Suppose that lep(x) epeO) I < C 'v'/hen ~I < 'I'j, and put

f lep(x) - ep(O)\sin Rx dx = J + J = II + 12, Integration by parts
x Ixl<17 Ixl>17

shows that 12 goes to zero as IjR, np matter what fJ is. We have 1111 < 2eRfJ.
Put e = R-2.)

4.14a. Use the Green's function for the operator L = - ::2' with the condi-

tions u'(O) = 0, u(00) outgoing to obtain the following eigenfunction represen­
tation:

2foo
---------------,1T---Jtr cos kx cos k~ dk = ~(x - ~).

b. Use the Green's function for the operator L = - ~22' with the condi­

tions u( - 00) and u ( + 00) outgoing to obtain the following eigenfunction
r<o:presentation:
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4.15. Prove (4.31) if G is given by (4.32).

(Hint. Put). = k2• Replace trigonometric functions by exponentials, and
show that

exp j k Ix -, I

where a(k) is a function of k that vanishes exponentially with kif 0 < x < 1and
o< ~ < 1.)

Singularities of the Green's Function

The typical form of the Green's function of a differential equation is
illustrated in (4.33). The second term of that formula is an analytic
function of Awhich has a singularity at x = ~. The first term is a sum of
solutions of the homogeneous equation divided by the conjunct of
these solutions. That this is the behavior of the Green's function for a
general differential operator may be seen from (3.61) in Chapter 3.

When the Green's function is integrated around a large circle in the
A-plane, the second term, being an analytic function, does not contribute
anything: The first term is a linear combination of solutions of the
homogeneous equation so constructed that the boundary conditions
on the Green's function will be satisfied.

We shall now investigate the structure of the Green's function in the
particular case where L is a second-order differential operator defined over
the interval (0, 1). Let Lu be - r-1[(pu')' - qu], where we assume that
p, q, and r are continuous functions and that p > 0, q > 0 in the closed
interval (0, 1). Let v1(x, A), vlx, A) be solutions of Lu = AU satisfying
the respective boundary conditions:

v1(0) = 1, v2(0) = 0,

p(O)v~(O) = 0, p(O)v;(O) = 1;

consequently, the conjunct of VI and V2 is unity. The function

g = P(~)[Vl(X)V2(~) - V2(X)VI(~)]H(x - ~)

is then a solution of
L g - Ag = c5(x - ~).

To find the Green's function G we must add to g such a linear cornbinatioll
of VI and V2 that the resulting function will satisfy some given boundary
conditions such as B1(G) = B2(G) = O. We assume B1 and B2 arc
independent of A.

Put

(4.36)
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Put
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----------'-'~e_=_I~:~:~ ;:~~Ir-,--------
and we find that

(4.37)
{3 = BI (g)B2( VI) - Blg)BI (VI) .

~

Note that oc and fJ are functions of ~ and A. Now clearlyt VI(X, A) and

and B 2(V2) are also entire functions of A. This shows that the only possible
singularities of G are at the zeroes of ~.

We shall assume, hereafter, that ~ is not identically zero because the
case ~ _ 0 is a very exceptional one. As an illustration of this, consider
the equation

U" + AU = 0,
with the conditions

Bt(u) - %t(0) ~t(1) - 0,

B2(u) = u'(O) + u'(l) = O.

We have VI = cos vl1x, V2 = sin viXx /vI~, and then

____----=~=-----I~-~O:i:~ ;:i:o~~ll = O.

It follows that every value of Ais an eigenvalue of this equation and that the
eigenfunction is

u = cos V'AX + cos VA(l - x).

For this case there is no spectral representation possible.
Suppose that ~ is not identically zero. If ~ = 0 for A = Ao, the

columns of ~ must be linearly dependent; therefore, there exist scalars
OC]. OC2. not both zero, such that

o = ocIB2(VI) + oc2B2(V2) = B2(OCIVI + OC2V2).

This shows that the function

t See Inee, Ordinary Differential Equations, Dover, 1944, pp. 72, 73.
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satisfies the boundary conditions B1(:u) B2(:u) 0; consequently,
u(x, }co) is an eigenfunction of L corresponding to the eigenvalue Ao.
Conversely, suppose that Ao is an eigenvalue of Land w(x, Ao) is the
corresponding eigenfunction. Since Vl(X, Ao) and V2(X, Ao) are linearly
independent solutions of (L - Ao)V = 0, there must exist scalars fib fJ2,
not both zero, such that

We have

o- B2(w) - fhB2(Vl) + {J2B2(V2)'

This shows that the columns of ~ are linearly dependent and therefore
A - O. We state these results as

Theorem 4.3. The number Ao is an eigenvalue of L if, and only if, ~
vanishes for A = Ao.

Let us introduce the functions

u)(x, A) = B2(V2)V)'- B2(v))V2,k

Note that Ul and U2 are solutions of Lu = AU satisfying the conditions
B2(Ul) = B1(U2) = 0 and that U 1 and U2 are linearly independent if, and
only if, ~ # O. We may write

where

Since B1(Ul) - - B2(U2) - n, we see that, if ~ vanishes for A = Ao,
the Green's function has a pole at A = Ao.

The residue of the Green's function at this pole will give the eigen­
functions corresponding to ).0. The number of eigenfunctions corre-
sponding to Ao will depend on the structure of the Green's function and
not on whether Ao is a simple or a multiple pole of the Green's function.
In the next section we shall discuss an example in which every pole of the
Green's function is simple, and yet there are two eigenfunctions corre-
sponding to every eigenvalue except the lowest.

There is one important case in which there is only one eigenfunction
corresponding to every eigenvalue; it is the case of a second-order differ..
ential operator with unmixed boundary conditions. This result is an
immediate consequence of the fact that an unmixed boundary condition
for a second-order differential equation determines the solution uniquely
except for a multiplicative constant.
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Suppose novv' that the Green's function has a multiple pole of order 'I'

at A - Ao. From (4.36) and (4.37) we see that we may write

where
Cl = B 2(g)B1(V2) - B1(g)B2(V2),

C2 = B1(g)B2(Vl) - B2(g)B1(Vl)'

Put ~ = (A - AoYr(A) where r(AD) -# 0; then the residue of G at Ao will be

1 0" 1 [cM, A)Vl(x, A) + C2(~' A)v2(x, A)]
(v - I)! OAv

-
1 r(A) A=Ao

Differentiation will give terms containing the eigenfunctions Vt(x, ;'0) and
V2(X, Ao) and also terms containing the derivatives of the eigenfunctions
with respect to A. These derivatives of the eigenfunctions will not be
solutions of the equation (L - A)u = °but of the equation (L - A),uu = 0.
We shall give a fuller discussion of this possibility in the next section.

Multiple Eigenfunctions and Multiple Poles of the Green's Function

In this section we discuss two examples. The first is an example of a
Green's function which has only simple poles but yet there are two eigen­
functions for every eigenvalue except the lowest. The second e~ample is
of a Green's function which has multiple poles.

For the first example, consider the equation u" + AU = 0, with the
periodic boundary conditions u(o) = u(I) and u'(O) = u'(I). By the
methods of the preceding section we find that the Green's function for
this problem is

G = _ sin vI(x - ~) H(x _ ~) _ cos vlx_cos vr~ - 1/2)

VA 2VA sin (VA/2)

sin Vlx sin VA(~ - 1/2)

VA 2 sin (VA/2)
The poles of G are at the points where sin ('\1'"1/2) = 0, that is, at
An, = (2mT)2, n = 0, 1, 2, .. '. Every pole is simple, but for every value
of Am except A - 0, the eigenfunctions are cos nx and sin nx

From this example, it is clear how it would be possible for an eigenvalue
of an mth-order differential equation to have m-fold degeneracy, that is,
m independent eigenfunctions corresponding to the same eigenfunction.
We shall see later that partial differential operators may have eigenvalues
with arbitrarily high degeneracy.

For the second example, consider again the equation u" + AU = 0
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but now with the boundary conditions u(O) - 0 and u'(l) cu(l). Here

c is a complex constant equal to v'1o cot vlo, where Ao IS that non-zero
root of the equation sin 2VAo = 2vlo which has the smallest absolute
value. The Green's function of this problem is

G
sin VAX VA cos VA(l - ~ - c sin VA(l - ~)

VA VA cos VA - c sin VA

sin VJ.~ vI cos vi(t x) c sin V}.(1

X)

X)H(x _ ~).

The singularities of G are poles at the zeroes of the function vl cos vl
- c sin vl We shall show that Ao is a double pole at G whereas all
the other poles are simple. The calculation will be simplified if, instead
of considering

2~ifG dA,

we put A k2 and consider

2~if2Gk dk.

Now G as a function of k is

k k cos k - c sin k

plus a similar term with X and ~ interchanged. If we expand the denomin­
ator in powers of k - leo, we find that

k cos k - c sin k = kocos ko - c sin ko

+ (k - ko)(cos ko - ko sin ko - c cos ko)

(k - kO)2+ 21 (c sin ko kocos ko 2 sin ko) 1-- ••••

Since c = kocot ko, where sin kocos ko = ko, the coefficients of the zeroth
and first powers of k - ko vanish. We have then

k cos k e sin k (k ko)2 sin ko -i ....

This shows that G has a double pole at k = ko. A similar expansion
shows that at every other zero of k cos k - c sin k the Green's function has
a simple pole.

The residue at the simple poles k kn , where c kn cot km is

2c sin ~x sin kne
c - cos2 kn •



EIGENVALUE PROBLEMS 227

At the double pole k ko, the residue is

2c [(sin kox)(~ cos ko~) + (x cos kox)(sin ko~)].
ko

We have finally the expansion
00

LSIn k x SIn k ~ 2c. .
<5(x -~) = 2c n k n + k- [~cOsko~sInkox+ xcOskoxslnko~]·

c - cos2 01 n

It is interesting to note that the functions sin knx (n = 0, 1, 2, ...) are
eigenfunctions but that the function x cos kox is not an eigenfunction.
We may call it an eigenfunction of the second rank by analogy with the
eigenvectors of second rank that were considered in Chapter 2 (page 68).
In fact, we have

(L - Ao)2(X cos kox) = 0
but

(L - Ao)(X cos kox) -:/= O.

The orthogonality properties and the expansion coefficients are obtained
exactly as those obtained for eigenvectors of higher rank in Chapter 2.

PROBLEM

4.16. Find the expansion of a functionJ(x) in terms of the eigenfunctions and
generalIzed eIgenfunctIOns of the second operator dIscussed In thIS sectIOn.

Perturbation of the Discrete Spectrum

As we have remarked before, often the solution of a differential equation
cannot be expressed in terms of known functions. This fact makes the
calculation of eigenvalues and eigenfunctions extremely difficult. In this
section we present a method for approximating the eigenvalues and the
eigenfunctions of a given differential operator by means of the eigenvalues
and eIgenfunctions of a different, sImpler operator. ThIs method IS called
a perturbation method because it is assumed that the difference between
the given operator and the simpler operator is only a small perturbation
of the latter.

Suppose that L is a self-adjoint operator, not necessarily a differential
operator, and that we wish to find the eigenvalues and eigenfunctions ofL.
Suppose that L o is a self-adjoint operator having a complete set of normal­
ized eigenfunctions Vb V2"" with the corresponding eigenvalues
Vh V2, •• '. Consider the eigenfunction equation for L, namely,

(L - A)U = O.

We shaH show how to express Aand U in terms of the eigenvalues and the
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eigenfunctions of L o. Put L L o + AL; then we may write the above
equation as follows:

(4.38) (Lo - A)U = - ilLu.

This equation may be considered as a non-homogeneous equation involv-
Ing the operator Lo - Awith - llLu as the non-homogeneous term. The

Lo-
u-

solution of (4.38) may then be written as follows:

1
AilLu;

Of, using the spectral representation of "0' we fin d that

This result, of course, is not a solution to the problem of finding the
eigenfunctions of L since the right-hand side depends 01). the unknown
function ilLu. However, now we assume t4at ilL is a small operator;
more precisely, we assume that ilL is a bounded operator with bound s.
We assume also that A is close to the nth eigenvalue Vn and that u is close
to the nth eIgenfunction vn ; therefore, we may put into (4.39)

A = Vn + (XIS + (X2e2 + .. "
u = vn + WI e + W2e2 + . . "

where (Xf, (X2, ••• are unknown constants and Wb W2, ... are unknown
functions. Then, comparing the coefficients of e, we obtain an infinite
set of equations which may be solved for the unknown constants (X and the
unknown functions w. It can be shownt that the series so obtained
converges if e is 'small enough.

In many applications all that is needed is the term in the first power of e,
and this can be found quite easily. Since u is approximately equal to Vn ,

put u equal to vn in the right-hand side of (4.39). We find that

-Vk
1

Since u is equal to V n approximately, the coefficient of V n must be approx­
imately one; therefore,

Using this value of A, we find that

t:' 1
(4.41) 'Hi ,....., vn I A <~, ALvn)vk'

! Rellieh, Storungstheorie der Spektra{zel{egung, lvlathematischer Annalen, Vol. t 13,
1936, p. 600.



EIGENVALUE PROBLEMS 229

\vhere the prime indicates that the sum is to be taken over all values of k
except k - n and where A is given by (4.40). Equations (4.40) and (4.41)
give the nth eigenvalue and nth eigenfunction of L correct to terms in the
first power of 8.

As an example of this theory, consider the problem of finding the eigen-

x 2

conditions u(O) = - (Xu'(O), and u(l) = 0, where (X is a given constant.
This problem can be solved exactly very easily. The eigenvalues are the
roots of the equation

sin k = (Xk cos k.

However, for illustrative purposes we shall do this problem by considering

L as a perturbation of the operator Lo - - :2 ,with the boundary condi-

tions u(O) = 0 and u(1) = O. We can write the eigenfunction equation
for L, namely,

(L - A)U = 0
as follows:

(4.42) (Lo - J0u = (XC5'(x)u'(O).

Here we have used the extended definition of the operator L o as defined
in Chapter 3, namely,

Low = - w" - w(O)C5'(x) + w(l)C5'(x - 1),

where w is any function having piecewise continuous second derivatives.
Since the eigenfunctions of Lo are sin krrx (1 < k < 00) and the eigen­

values are (krr)2, the solution of (4.42) is

, ~ h sinh«

(4.43) A - n2'71' 2 ~ 2(Xn2'71' 2

and
• ~' '71' 2kn sin k'71'X

u(x) ~ SIn n'71'X + 2(X A k '2'71'2

where the prime indicates that the sum is over all values of k except k = n.

PROBLEMS

4.17. Show that the value of A given by (443) is an approximate solution of
sin k - ttk cos k (put A - k 2) if mTtt is small compared to one.

4.18. Find the first eigenvalue and the first eigenfunction of L = - ­
dx 2
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+ (l ~ X)2' with the boundary conditions 'U(O) = u(l) = 0, by perturbing the

operator La = - dd
2

2
, with the boundary conditions u(O) = u(l) = O. Com­

x
pare the approximate result with the exact result. (Hint. The general solution

k
? • Lcos kx . j Lsin kx j

----rort-f-l-L"'·ut-=e-t'r"-"H:U--t'ls-u---=---n-a\ 1 + x + k Sin kX) + b \ 1 + x k cos kX)H.)1--------

The Continuous Spectrum-Example

In order to acquire a better understanding of the part the continuous
spectrum plays in the spectral representation of an operator, we shall

continuous second derivatives, which satisfy the condition
u'(O) = IXU(O),

and which are such that both u(x) and u"(x) are square integrable over the
interval (0, (0). We shall obtain the spectral representation of this
operator by the method we have used before, that is, by constructing the
Green's function and integrating it around a large circle in the complex
A-plane.

The construction of the Green's function presents certain difficulties
when the operators consIdered are defined over a semI-Infinite or infinite
interval. We know that the Green's function G(x, A, ~) is a solution of
the equation
(4.44) G" + AG = - c5(x - ~),

which satisfies the boundary condition

(4.45) GiO, ~, A) = IXG(O, ~, A).

However, these conditions are not enough to define G uniquely since to
any solution of (4.44) satisfying (4.45) we may add an arbitrary multiple
of cos VAx + ex sin VAx/VA and thus get another solution of (4.44)
satisfying (4.45). To define G uniquely, some kind of boundary condition
at infinity will be needed. One such condition is that, for A-complex, G
belong to £2 over the interval (0, (0). We shall show that whenever this
condition can be satisfied, it is equivalent to the condition that G vanish
at infinity.

From (4.44) we see that for x >~,

G = aeivXx + be-ivXx.

If Ais complex or if Ais real and negative, one of the terms in this expression
goes exponentially to 00 and the other goes exponentially to zero. rt is.
clear then that for these values of Athe Green's function belongs to .t'J, if,
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and only if, it goes exponentially to zero for large values of x. But 'vvhat
about real positive values of A? In .this case both exponentials are
bounded at infinity and neither term, nor any linear combination, belongs
to £2' We therefore apply the principle of analytic continuation and
define the Green's function for real positive values of Aas the limit of the
Green's function with complex ). as ). approaches the real axis.

Notice that this definition still does not specify the Green's function
uniquely because' Amay approach the positive real axis from above or from
below, and these two different approaches will give different Green's
functions If we consider values of A such that 1m VA > 0, the Green's
function for real positive values of Awill behave like a multiple of eiVAx for
large values of x. On the other hand, if we consider values of Asuch that
1m VI < 0, the Green's function for real values of A will behave like a
multiple of e-iVAx for large values of x. Since we shall always assume a
time factor in the form e-iwt, the Green's function defined by analytic con­
tinuation from the Green's function defined for 1m vl > 0 will behave
like "outgoing waves" for large values of x. Henceforth, the Green's
function will mean that Green's function which behaves like outgoing
waves at infinity. In a later chapter we shall see why this is a natural
requirement.

We shall use the principle of analytic continuation in more general cases.
We formulate it as the following

Rule. Suppose that L is a differential operator which is in the limit-point
caset at infinity; then we define the Green's function G for L by implicitly
requiring that G vanish for large values of x if A is complex and 1m v~ > o.
For real values oj A, G is defined as the limit of GJor complex values of A
as A approaches the real axis.

Let us now return to the solution of (4.44) and (4.45) for complex values
of A. We assume that 0 < arg A< 21T and choose that branch of the
square root for which

(4.46) 0 < arg 1.1/ 2 < 1T.

The term eiv'Ix will vanish exponentially as x approaches infinity; con­
sequently,

(cos v1~ +~ sin vI~) eiv'Ix H(x - ~).
VA iVA ~ <X

t A differential operator L is said to be in the limit-point case at infinity if the differen-
tlal equation without boundary conditions, represented by Lu 0, has at least one
solution which is not of intearable square in an interval containing infinity.
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Consider the integral of G over a large circle of radius R in the complex
A-plane. Just as in Problem 4.15, we can show that

1 ~ _ 1 ~ eiv'Xlx-~1- __ Gd)' - -__ d)'--------------'727f"f'7T+-i hi ~i:-,.-V+IA-'}--~OC~----------

plus terms of higher order in l/R. Put ;. - k 2, and we get

1 1 iklx-~I

-. i G d)' = -.f ~ 2k dk
27TZ ! 27TZ ~ zk - It

plus terms which go to zero as R ---+ 00.

We now use Cauchy's theorem to deform this circle into a contour
around the singularities of G. Note that G has a branch-point sin'gularity
at A = aana a possible pole at vI - - ioc. Because of the branch-point
singularity the value of G at A in Fig. 4.3 is not the same as the value

IrnA

/ ~APlane

I \
.p \A

C D )B ReA

\
"'- /

Fig. 4.3

of G at B; consequently, Cauchy's theorem does not apply to the circle
ACB since G is not a single-valued function on this contour. However,
on the curve ACBDA (here the real axis has been taken as a branch
cut) the function G is single-valued, and therefore by Cauchy's theorem

--------------=1=-£ G dA
27Ti JiCBDA

equals the sum of the residues of G inside the circle. The only possible
singularity of G inside the circle is at the point P, where V;' = - ioc.
Since by (4.46) the imaginary part of V). is positive, P will be inside
the circle if, and only if, the I eal par t of ex is negative. Suppose that P
is inside the circle; then the residue at P is

- 2oceo:(x+~)[H(~ - x) + H(x - ~)] = - 2oceO:(x+~).

We have

2 o:(zl~) 1 f GdA 1 f + 1 f .
oce - 27TiACBDA - 27Ti~C.8 27T;BDA'
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and, therefore, since we assume that the first integral on the right hand
side gives a ~-function, we get

(4.47) - <5(x - ~) = ~L = - 2IXeoc(x+~) - -.!...-. i G dA.
----------------.£;;2m"IThl-~CB 2"ITl _Bu.<Dlh<.4.__------

The last integral may be simplified by putting A = k 2• Note that on the
upper side of the cut VA = + k, but on the lower side of the cut
V). = - k. We have

1 [ 1 ~ IX) eik~
27Ti .~DA G dA - 27Ti .L(COS kx + k sin kx l-;ik=_=IX--.L2':k.k~d1lik~BHTtt(~~~xx-).----

1 tOO IX e
ikx

+-. cos k~ + - sin k~ . 2k dk H(x - ~)
27T 0 k zk - IX

1 f~ ( IX) e ikt;-------~+"l=---.cos kx + - sin kx. 2k dk H(~ x)
27Tl 00 k - zk - IX

+~ (0 (cos k~ + ~ sin k~)' ~-ikX 2k dk H(x - ~).
27Tl JXJ k - zk - IX

Combining the first and third integrals and also the second and fourth
integrals, we get

1 G dA = - ~ 00 cos kx + ~ sin kx cos k~ + ~ sin k~

From (4.47) we finally obtain the following spectral representation of L:

(4.48) <5(x - ~) = - 2IXeOC(x+~)

2 d k IX. k)( kl: IX. kl:) k2
dk

-------~++---=rn~lo\cosx + k ~lnx cos<; + k SIn<; k2 + IX2 '

Note that the first term is missing if the real part of IX is positive.
,

A Direct Approach to the Continuous Spectrum

The previous sections have shown that the method of integrating the
Green's function in the complex A-plane gives the spectral representation
for a differential operator whether the spectrum is discrete, continuous, or
a mixture of both. However, if the operator has a spectrum that is
purely discrete, we may avoid the use of the Green's function since it is
comparatively easy to find all the eigenvalues and the eigenfunctions. If
we assume these make up the entire spectrum, we have obtained the
spectral representation.

We shall show that there exists a direct method for finding the values
of A in the continuous spectrum and the corresponding functions in the
spectral representation. This method depends on the concept of the
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approximate spectrum of an operator L. The number J~ is in the approx-
imate spectrum of L if, given any 8 > 0, there exists an element U e in the
domain of L such that

«L - A)Ue, (L - A)Ue>< e<ue, uJ.
It can be sho'Nn (see page 127) that the approximate spectrum is contained
in the spectlum ofL. IfL is self-adjoint, the approximate spectIuln coin-
cides with the spectrum (see Problem 2.53). In any case, if A is an eigen­
value and U the corresponding eigenfunction, then (L - A)U is identically
zero; consequently, all eigenvalues of A are in the approximate spectrum.

Suppose that A belongs to the continuous spectrum of L, that is, the

unbounded, there exists in the domain of the inverse operator (L - A) 1

a sequence of functions vix) haVIng the property that

«L - A)-lVn, (L - A)-lVn>> n<vn, vn>.
Put Un = (L - A)-lvn , and then we have

«L ).)un, (L ~ ).)un> < 1 <Um Un>;
n

consequently, A belongs to the approximate spectrum. If the functions
un(x) converge to a limit u(x), we shall say that u(x) is an improper eigen­
function corresponding to the improper eigenvalue A. Since A is in the
continuous spectrum, the function u(x) cannot belong to the domain of L,
for otherwise it would be an eigenfunction and Awould be in the discrete
spectrum.

If the differential operator L is such that it has no residual spectrum,
we conclude that the following theorem holds:

Theorem 4.4. Any value of A in the approximate spectrum which is not
an eigenvalue belongs to the continuous spectrum, and conversely any value
ofAwhich belongs to the continuous spectrum is in the approximate spectrum.

ThIS theorem enables us to find the continuous spectrum directly. For
example, consider the operator whose Green's function was defined in
(4.44) and (4.45). We shall show that every real positive value of A is in
the approximate spectrum.

Consider the functiont--------------------

oc2
= -(x - B)2 Cs;. xs;. B

4 '
- 0, B -::;;, x

t We assume (X < O. A similar method can be used for any value of (x, real or
complex.
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v'~c - 2nTr

2B= C--.
EX

235

This function is continuous and has a continuous derivative everywhere
from 0 to 00. It satisfies the boundary condition u'(O) = ocu(O) and it
belongs to £2; therefore, un(x) belongs to the domain of L. Now

(L - A)Un = 0, 0 < x:::;;: C

- [- 2 - A(X - B)2] 4' C < x < B

= 0, B< x.

We see that

<~ - A)Un , (L - A)Un) - fi2 + A(X B)2]~2~-,---2----'dr,...-x-------
a
oc2fo= - (2 + Ay2)2 dy < K
4 0 B

where K is a constant independent of n. Since

<un' un> > Jo
o

(cos vJ.x + :J.. sin v;..y ax
112-J oc2j 1 ( oc2I1c -

----------c-=-2-J0 \ 1 + A) dx + 2 1 AJJ0 cos 2VAX dx

(l ra --+ -= sin 2VAX dx
vl"o

we have

<Un. un> .:;: ~ (1 + ~)

As n increases, C increases, and the right-hand side of this inequality
approaches zero, consequently, A is in the approxitnate spectrurn.

Notice that what we have done is to use the fact that U = COSVAX

+ :"l sin V~x is a solution of the equation

(L Je)u - O.

Since U does not belong to };2 over the infinite interval, it does not belong to
the domain of~ and is not an eigenfunction. We, therefore, consider the
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function which is equal to 'It over the finite interval (0, C) and equal to
zero elsewhere. Since this function would be discontinuous and have a
discontinuous derivative at x = C, we insert another function to make a
smooth transition from U to zero. We shall call the resulting function Un'

Now L - A applied to this cut-off function un will give zero except in the
transition region, but the integral square of 'Un approaches infinity as C
approaches infinity. If the function (L - A)Un in the transition region is
bounded for all C, we find that the ratio

approaches zero as C approaches infinity, and consequently A is in the
approximate spectrum. Note that the boundedness of the function
(L - )~un in the transition region is due to the fact that 'tt(x) oscillates
infinitely often and is bounded as x goes ~o infinity.

differentiable functions which are square integrable from - 00 to 00. We
can show that every real positive value of A is an improper eigenvalue of

multiplicity two, that is, there exist two improper eigenfunctions, cos Vlx
and sin v"lr, corresponding to the value ).. The method is simila~ to

that used above. Consider the function Un = cos V1x, when x is between

- 2n7T/V). and 2n7T/vi Add a transition function at both ends to
smooth it off to zero. Then we see that the ratio

«(L - A)un, (L - A)Un>
<un' un)

approaches zero as n approaches infinity. This shows that cos V~x is all
improper eigenfunction for the improper eigenvalue A. A similar device

shows that sin VAX is also an improper eigenfunction for the same value
of A.

We state the following general result whose proof may be found in
Titcll1uarsh Eigenfunction Expansions:

Theorem 4.5. Consider the equation

(4.49) u" + (A + q)u = 0

over. a semi-infinite or infinite interval. If

wI dx < 00,

every real positive value of A is an improper eigenvalue and the solutions of
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(4.49) which satisfy the boundary condition at the limit-circlet boundary
point, ifany, are improper eigenfunctions.

Now that we have a method by which the values of A in the continuous
spectrum together with the corresponding eigenfunctions can be obtained,
it is necessary to know how to normalize them so that the spectral repre-
sentation can be obtained. For example, we have already shown that

cos kx +ksin kx, where k = V~, are the improper eigenfunctions needed

in the expansion (4.48). But the question of how to obtain the normal-
ization factor k 2(k2 + (X2)-1 still remains. For self-adjoint operators
with a discrete spectrum, we normalize the eigenfunction Vn so that the
integral square of l1n is one Then we have .

where (jnm = 0 if n #- m and = 1 if n = m.
For the continuous spectrum we shall make a similar normalization.

Suppose that u(x, A) is an improper eigenfunction corresponding to the
improper eigenvalue A; then we normalize u(x, A) so that

(4.50) <u(x, A), u(x, A') = (j(A - A').

Of course the scalar product does not exist in the ordinary sense since
u(x, A) does not belong to £2' However, the scalar product does exist as
a distribution in Aand A' and must be evaluated as such. To show that
(4.50) is necessary, we start with the representation

(4.51) (j(x - ~) = ~vn<x)vn(~) + fu(x, A)U(~, A) dA,

where v,z(x) are the eigenfunctions and u(x, A) the improper eigenfunctions
If we take the scalar product of (4.51), with u(x, l.') Vie get

u(~, A') = ~vn<~)<vm u(A) + fdA u(~, A)(U(A), u(A').

For this result to be valid, (4.50) and also (vn , U(A) = 0 must hold. We
thus obtain

Theorem 4.6. In the spectral rep,resentation ofa self-adjoint operator the
improper eigenfunctions are normalized according to (4.50).

In practice it is not easy to evaluate the divergent integrals occurring
in (4.50) and to show that they are (j-functions. Instead of showing how
l his may be done, we present in the next section a method which auto-
matically obtains the improper eigenfunctions with the proper normal­
ization.

-r A Imllt-clrcle boundary point for a differential operator L is a point at which all
sulutions of the formal differential equation with no boundary conditions, represented
by L'lJ- ;~;, 0, arc squul'c intcgrublc in some interval which has the boundary point as an
end point.
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The Continuous Spectrum by Perturbation

For some operators it is possible to obtain the improper eigenfunctions
by means of perturbation methods. For example, suppose that we know
the complete spectral representation of an operator L; then if M is a
"small" operator we expect that the spectral representation for L + },[
differs slightly from that for L. We shall show how the spectral repre-
sentation for L + M can be obtained by perturbation methods from the
spectral representation for L.

space of twice-differentiable functions which are square integrable over
o to 00 and which satisfy some specified boundary condition at x = o.
We assume also that q(x) is absolutely integrable from 0 to 00. The
eigenfunctions and improper eigenfunctions of L + M are solutions of the
equation

u" + (A - q)u = O.

We shall write this equation as follows:

(4.52) u" + AU = qu,

and then, using the Green's function for the equation

u" + AU = 0,

we may transfOIm (4.52) into an integral equation. Before formulating
this integral equation, we shall consider exactly how the Green's function
inverts the differential operator.

The Green's function G(x, ~, A) is that solution of the equation

G" + AG - - ~(x - ~

which satisfies the specified boundary condition at x = 0 and an "outgoing
wave" condition at x = 00. This outgoing wave condition is formulated
as follows: If 1m v':i~ > 0, G should vanish exponentially at x - 00; if A
is real, G(x, ~, A) should be the limit of G(x, ~, A + ie) as e approaches zero
through positive values.

Consider now the solution of the non-homogeneous equation

(4.53) w" + A:w = j(x),

wher e lex) is absolutely integrable from 0 to 00. If we put

(4.54) w = - Jooo G(x, ~, A)f(~) d~,

wwill be the solution of (4 53) which satisfies the specified boundary COil-

clition at x 0 and also satisfies an outgoing 'Nave condition at infinity.
There is a partial converse of this result. Suppose that u(x) is uny
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function with piecewise continuous second derivatives '.\Thich satisfies the
specified boundary condition at x 0 and an outgoing wave condition
at infinity, and suppose that u and u' are absolutely integrable from 0 to 00;

then consider the following integral:

-----------Ep¥-r.(x..+-)~-foooG(x, ~, A)[u"(~) + AU(~)]----rld'E-~.-----

From (4.54) by putting w = F,f= u" + Au we see that

F" + AF = u" + AU

and therefore F - '1/" unless the equation

V
ff + AV = 0

with the specified boundary condition at zero and the o~tgoing wave
condition at 00 has a non-trivial solution. It follows that F(x) u(x).

Let us return to the problem of finding the eigenfunctions and the
Improper eigenfunctions of (4.52). Suppose first that A is an eigenvalue
for (4.52) and that u(x) is the corresponding eigenfunction; then u(x)
and u"(x) are square integrable from 0 to 00. It can be shown that u(x)
and 'I/,"(x) are also absolutely integrable from 0 to 00; therefore,

- fooo
G(x, ~, A)qu d~ = - fooo G(u" + AU) d~ = u(x)

by the use of the partial converse proved above. This means that any
eigenfunction of (4.52) will be a solution of the integral equation which
results from replacing f@) in (4.54) by q(~u(~. The integral equation is :

u(x) = - fooo
G(x, ~, A)q(~)U(~) d~.

Suppose, however, that 1 is an improper eigenvalue and u(x) the corre-
sponding improper eigenfunction; then u and u' will not be absolutely
integrable, F(x) will not equal u(x), and we do not obtain the above
integral equation for u. -

In Appendix II of Chapter 3 we showed that at infinity u(x) behaves like
a linear combination of ei'V' A and e-i"1AX. Let us consider complex values
of Asuch that 1m v'~ > 0; then eiYfx will go to zero, but e-iYIt will become
infinitely large as x approaches infinity. Since the improper eigenfunction
u(x) has an undetermined constant factor, we may choose the constant
factor in such a way that, for large values of x, u(x) behaves like e-i'\l AX

plus a constant multiple of elY;:x. This means that, if 1m VA > 0, the
difference u(x) - e-iYfx will go to zero exponentially fast as x approaches
infinity. To emphasize that A is complex, we shall replace A by A + ie,
where now A will be reat and 13 will be a small positive number. Let
Ul(X) be that solution of the equation

U; + (A -1- ie)u1= 0
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which satisfies the specified boundary condition at x 0 and is so
normahzed that Ul(X) - exp ( - I VA + ie x) vamshes for large values
of x. Put U = Ul + v in the left-hand side of (4.52), and we get

v" + (A + i8)V qu,

where Ul + v satisfies the specified boundary condition at x = 0 and v
vanishes at infinity. Since the function u(x) is bounded and, by hypothe­
sis, q(x) is absolutely integrable, qu is absolutely integrable. Since vex)
satisfies the outgoing wave condition at infinity, we may use (4.54) to get
the following equation:

vex) = - foOO
G(x, ~, A + ie)q(~)u(~) d~.

Finally, replacing v by U Uh and letting 8 =+ 0, we obtain the desired
integral equation for u(x), namely,

(4.55) u(x) = lim [Ul - roo G(x, ~, A + ie)qu d~]
8-70 Jo

_________u---=l=--=--(x)~1OO G(x, ~, A)qu d~,

where G is the "outgoing wave" Green's function.
We shall derive a similar equation in the general case of a differential

operator L and a pertubation operator M. Suppose that we wish to
obtain the eigenfunctions and the improper eigenfunctions of L + M.
These functions will be solutions of the equation

(L + M - A)U = O.

In analogy with (4.52), we write this equation as follows:

(L - A)U = - Mu.

If U is an eigenfunction of L + M, we may invert this equation just as
before to obtain the integral equation

u (L ).)-ll''{U.

If U is an improper eigenfunction of L + M, we consider the corre­
sponding improper eigenfunction Ul which is a solution of the equation

(L - A)Ul = o.
We assume that M is a small perturbation in the sense that v - U Ut is
a function which satisfies the outgoing wave condition at infinity. Rc-
placing U by Ul + v in the eigenfunction equation for u, we get

(L ~)'L' - Mu
or

v - - lim (L - A ie) lMu.
B-?O
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Since v tU tUh ~Ne find that

U = Ul -lim (L - A. - i8)-lMu,
8-+0
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an equation similar to (4.55). Henceforth, for convenience in writing,
we shall omit the limit and simply write

(4.56) U = Ul - (L - A - i8) IMu,

but the second term on the right-hand side is still to be understood as the
limit of the operator as B~ o.

We shall now show how to normalize the improper eigenfunctions of
L + M. Suppose that 4>(A) is an improper eigenfunction of L corre­
sponding to the improper eigenvalue A; therefore,

(L - ).)i!>().) - o.
Suppose also that +*().) is an improper eigenfunction of the adjoint
operator L * and that it is so normalized that

(4.57) <4>(A), 4>*(A') = b(A - A').

Let "PeA) be that improper eigenfunction ofL + lv1 which was obtained by
perturbing cp().) just as in (4.56) U was obtaIned by perturbing Ul; then
"P(A) is the solution of the following integral equation:

(4.58) "P(A) = 4>(A) - (L - A - iB)-lM"P(A).

A slight modification of the previous argument ~ill show that the
function 1f'*(A) which is the solution of the following integral equation

(4.59) "P*(A) = 4>*(A) - lim (L* - A + i8)-lM*"P*(A),
8-+0

where M* is the operator adjoint to M, is also an improper eigenfunction
of L * + M* corresponding to the improper eigenvalue A. For conveni­
ence in writing, we shall omit the limit symbol in (4.59).

Theorem 4.7t. The improper eigenfimctions 11'(1) and 11'*(2.) satisfy the
f~llowing relation:

<"P(A), "P*(A') = b(A - A').

The proof of this result will be found in the appendix'to this chapter.

Normalization of the Continuous Spectrum-Examples

Theorem 4.7 can be used to obtain the normalization of the functions

cos kx + : sin kx which are the improper eigenfunctions for the

TThis result is contained implicitly in a paper by Moeller, Komgle Danske Plden­
skabernes Re/s'ked. Copenhallen, 1945.
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previously considered operator - ;2 for 0 < x < 00, with the boundary
x 2

condition u'(O) = cxu(O). We shall denote this operator by L + M, and we
d2

clition u'(O) 0 by L. The spectral representation for L is known from
Problem 4.14. It is given by the formula

_________(5(~x__~~)_~~1: cos kx cos k~ dk,

where A = k2 • Replacing x by k, ~ by k', and k by x, we get

________---=()-¥(k"------------"-"'k-f')__~_roo cos kx cos k'x dx.
7T to

This shows that (2/77')1/2 cos kx are the normalized Improper elgen-
functions.

According to Theorem 4.7, the normalized improper eigenfunctions of
L + M will be obtained if we find functions 1p(x, A) which are solutions of

(4.60) (L + M}fp ).1p

and which differ from (2/7T)1 /2 cos kx at infinity by a function which van­
ishes for 1m k > o. We shall need also a function 1p*(x, A) which is a"
solution of

(L + Af)tp* Atp*

and which differs from (2/7T)1/2 cos kx at infinity by a function which
vanishes for 1m k < o.

To find 1p(x, A) we note that (4.60) is 'rp" + k21p 0 with the boundary
condition 1p

I CO, k 2) - cx1p(O, k 2). Since eikx vanishes for large x if1m k > 0,

we put
1p = (2/7T)1/2[COS kx + yeikx],

where y is a constant to be determined so that 1p satisfies the specified
boundary condition. We find that

y = cx(ik - CX)-l

and, therefore, if eikx is replaced by cos kx + i sin kx, we get

'P = (2/1T)l/2ik(ik - ex)-l [cos kx +fsin kx]1-. _

Similarly, since L is self-adjoint, to find 1p* we assume that

1p* = (2/7T)112 [cos kx + yle ikX] ,

\Jlhere ')I' is a constant to be determined so that 1p* satisfies the specified
boundary condition. Since the boundary condition and the differential
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equation are real, we recognize that tp and tp*, y and y' must be complex
conjugates. (The reader can verify this by finding y' to satisfy the bound-
ary condition.) We have

",' = (2 /1T)l/Zik(oc + ik) I ~cos kx +i sin kx~~. _

From Theorem 4.7 we see that

- lJ(k - k')

Since the l5-function is zero unless k = k', this equation may be rewritten
as follows:

consequently, the normalized improper eigenfunctions are

(2frr)11'k(oc' + k') II' (cos lex + ~ sin lexj.

of functions u(x) which have piecewise continuous second derivatives for
- 00 < x < 0 and for 0 < x < 00 and which are such that u and u" are
of integrable square from - 00 to 00. As we mentioned in Chapter 3, the
solutions of

(4.61) - u" + exl5(x)u = Au

are functions which are solutions of - u" = AU for x -:/= 0, and are con­
tinuous at x - 0, but are such that the first derivative has a jump at
x 0 equal to cx:u(O).

We can show that L + M is self-adjoint and real if ex is real. We shall
assume that ex is real; then Awill be real. If ex is positive, L + M will be
positive-definite and A can only be positive. If ex is negative, A = ex/2 is
an eigenvalue and u(x) - (2I-oc-j)-1 exp ((X~/2) is a normalized eigen­
function.

d2
To normalize the improper eigenfunctions we shall put L = - ­

dx2

over the dOlnain of functions u(x) which have piecewise continuous second
derivatives and for which u and u" are of integrable square from - 00 to
00. Every positive re~\l value is an improper eigenvalue of L. To any
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real positive value of A there are two corresponding improper eigen-
functIons cos V~x and sin Vb;. If we put A = k2 , we may let one
improper eigenfunction correspond to a positive value of k and the other
correspond to a negative value of k. In this way we would obtain the
following spectral representation:

1 tOO 1 fO- cos kx cos k~ dk +- sin kx sin k~ dk = <5(x - ~).
71 0 71 -00

Since the Integrands are even functIOns of k, this result can also be written
as follows:

1 foo 1 foo- cos kx cos k~ dk + - sin kx sin k~ dk = <5(x - ~).
271 -00 271 -00

A particularly simple form is obtained for the spectral representation if
we take cos kx + i sin kx eikx as one inlpfoper eigenfunction and
cos kx - i sin kx = e-ikx as the other improper eigenfunction corre­
sponding to A = k2• In that case, we have (see Problem 4.15)

________~!_Joo eik(x-~) dk = c5(x - ~.T7T -00

The different normalizations for the improper eigenfunctions of this
operator are a consequence of the fact that there are two improper eigen­
functions corresponding to each improper eigenvalue A - k2• We can
find many more just by introduCIng different sets of basis vectors in the
two-dimensional space of improper eigenfunctions.

To obtain the normalization for the improper eigenfunctions ofL + M,
we shall apply Theorem 4.7 with ef>O.) - eikx and ef>*().) - e-ikx• Then
tp(A) is the limit as e approaches zero of the solution of

- 1p" + oc<5(x)1p = (k + ie)21p

such that the difference between it and ei(k+is)x vanishes for x = ± 00.

This means that 1p - ei(k+is)x must behave like some multiple of e-i(k+ie):ll

for x = - 00 and like some multiple of ei(k+is)x for x = 00. It is clear
that once we have this knowledge of the behavior of 1p we may take e = 0
and put

1p = eikx + Re-ikx, x < 0

_ eik$ + Seik$ _ Te ikx, x > 0,

where Rand T are constants to be determined so that the discontinuity
conditions at x 0 are satisfied. These conditions imply

I+R=T,

ikT - ik(l - R) = oc(l + R).
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\Ve find that

R = rx(2ik - rx)-l, T = 2ik(2ik - rx)-l;

2ik - rx'

rxe ilcx
'f/J eikx I x < 0

consequently,

2ikeikx
- ,

2ik - rx
x> o.

From the fact that c/>*(AJ - e-ikx, it follows that 'lp*(AJ is the limit as 8

approaches zero of the solution of

- 'f/J*" + rx<5(x)'f/J* = (k - ie)2'f/J*

such that the difference between it and e-i(k-ie)x vanishes for x - + 00.

This means that "p. e i(k-ie)x behaves like some multiple of ei(k-ie)x for
x - - 00, and like some multiple of e irk ie)x for x - + 00. Just as
before, we may take e = 0 and put

'f/J* = e-ikx + R*eikx, x < 0

= T*e-ikx, x > 0,

where R* and T* are to be determined so that the discontinuity conditions
are satisfied. We find that

R* = - rx(2ik + rx)-l, T* = 2ik(2ik + rx)-l;

consequently,

. rxeikx

'f/J* = e-
tKx

- 2ik + rx'

2ike ikx

2ik + rx'

From Theorem 4.7 we conclude that

x<o

x>o.

1 foo-~-----2- tp(x, k)tp*(x, k') dx
7T -00

fJ(k k').

PROBLEM

4.19. Find the spectral representation for the operator L = - ::2 + q(x)

over (0, 00), with the boundary condition u(O) - 0, where q(x) - 0, for x > 1,
and q(x) - Q, for °< x < 1. Is there any difference in the representations if
a is negative instead of positive?

Normalization of the Continuous Spectrum and Scattering

d2
For operators such as dx

2
+q(x), where q(x) vanishes for large value
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of x, there exists an intimate connection between the norm~lization of
the continuous spectrum and the theory of the scattering .of plane waves

cxu(O). In the preceding section we showed that the improper eigen-
functions would be normalized if we start with a function

@32 1/2
tp - -cos kx + yeikX]

-------------

which satisfies the equation

and the boundary condition tp'(O) = octp(O). Howe~er, instead of per-
turbing cos kx to get the function 'f/J, we can start with a plane wave
incident from infinityt (217)-1/2e-ikx (remember that we always assume a
time factor e-iwt) and perturb this to get the normalized improper eigen­
function. Put

tp = (217) I/2[e ikx + Seikx],

where S is a constant to be determined so that tp'(O) = octp(O). We have

ik(S - 1) = oc(l + S);

·k 'l - oc
s = ik + oc

therefore,

and then

---------'ffl'f/Je-=~(f-Z2!R'1T"-I-)-----"1<.LO!2"---1[e-ikx+ :~ ~ >ikx]--..--------­
It is easy to show that this is the same result as that we found before. Note
also that the value of S could have been written down immediately by
applying (3.73) in Chapter 3. The quantity S is the reflection coefficient
for a plane wave coming in from 00 and being reflected by an impedance
discontinuity at x = o. There, the impedance of the solution is tp'(O)/tp(O)
= oc whereas the incoming wave has the impedance - ik. The quantity
Zm in (3.73) is the ratio of impedances, and in this case Zm = - oc(ik)-l;
consequently by (3.73)

S = r = 1 + rx(ik)-l = ik + rx
m 1 - oc(ik)-l ik - oc'

which is in agreement with the previously derived result.

t Note that from Problem 4.14 V.,'e have the following normalization for plane waves:

(27T)-1f QO eCkllll-w'l dk :=.:: c5(x - x').
J-co



EIGENVALUE PROBLEMS 247

This approach to the normalization of the continuous spectrum is not
simpler than the approach of the previous sections, but it is very useful
because of the physical insight it gives into the formulas. We may state
the following

Rule. The improper eigenfunctions "R(x, k) of the real operator _ :2 +
ux2

q(x) , with some real boundary condition at x = 0 and where q(x) vanishes
for large values of x, will be properly normalized if they are obtained as the
result of the scattering of the incoming plane wave (27T)-1/2e-ikX; that is,
"P(x, k) is the solution of

-?p" + q2?p = k~

satisfying the boundary condition at x = 0 and behaving at infinity like
(27T)-1/2[e-ikX + Seikx], where S is a constant. We shall have the relation

Jooo tp(x, k)?p(x, k') dx = ~(k - k'),

where ijj denotes the complex conjugate function to ?p.
The proof of this rule follows easily from Theorem 4.7. Note that if

--
the operator is not real, the function tp(x, k') must be replaced by tp*(x, k'),
the function considered in Theorem 4.7.

A similar rule will hold for the real operator - ~: + q(x) over

( - 00, (0) if q(x) vanishes outside some finite interval. Because there
are two improper eigenfunctions for every real positive value of A = k2,

we must consider plane waves incident from - 00 as well as from + oo.t
The distinction between these waves will depend upon the sign of k.
The function e~1cx for k positive will indicate a wave going from left to
right and will be called a wave incident from - 00, but the same
function for k negative will indicate a wave going from right to left and
will be called a wave incident from + 00. We state the following

Rule. The improper eigenfunctions 1p(x, k) of the real operator

- dd
2 + q(x) over (- 00, (0), where q(x) vanishes outside afinite interval,

x 2

will be properly normalized if they are obtained as a result of the scattering
of incoming waves (27T)-1/2eikx; that is, "R(x, k) is the solution of

such that at ± 00, ?p behaves like

(27T) 1/2[eikx + S± exp (ijKxiJj

t A proof of this will be found in Titchmarsh, Eigenfunction Expansions Associated
with Second Order Differentl,,1 Equations, Clarendon Press, Oxford, 1946.
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where 8+ and S are suitable constants.
We shall have

f~oo 1p(x, k)1p(x, k') dx = ~(k - k'),

where tp(x, k') is the complex conjugate o./tp(x, k).

The proof of this will follow from Theorem 4.7 if we use a Green's
function defined for A = (Ikl + is)2. We shall illustrate this rule for the
previously considered operator in which q(x) - (X~(x). Put

------------'lI1p1-=o-l(f-,i'2!'R'1T'-I-)-~1+_""'/2[eikX I S+ exp (i I~i-c-,-----ffiX->;>--\-JOJ--------­

= (27T)-1/2[eikx + S- exp (- ilk Ix)], x < o.
From the discontinuity conditions satisfied by 1p we get

1+8+-1+8
and

ik + ilklS+ - ik + ilkls_ = a:(l + S+).

These equations imply

consequently,

(4.62) 'P - (217) 1/2 [ew + 2ilkl'"_ '" exp (i~. x> 0

= (27T)-1/2 eikx + . (X exp (- ilk Ix) , x < O.
21 k - (X

(21"'1)-1 exp [~ (Ix) + I~i)] + roo 'P(X, k}tp(~, k) dk = ll(x -~,

where the bar indicates the complex conjugate function. Note that the
first term on the left-hand side is missing if (X is positive.

PROBLEMS

4.20. Obtain (4.62) by using (3.73) of Chapter 3. (Hint. At x = 0 the im-
pedance jumps by cx.)

4.21. Find the spectral representation for the operator in Problem 4.19 by
the rule of this section.
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4.22. By using the rule of this section, find the spectral representation for the

Summary of Spectral Representatiolls

For reference we shall tabulate the spectral representation for some
operators which occur frequently in applications.

X2

the boundary conditions; in the second column we give the spectral
representation of b(x - g).

(a) u(O) = u(l) = 0;

00

22: sin n'T1'X sin n'T1'~;
1

(b) u'(O) = u'(l) = 0; 1 + 2 cos n'T1'X cos n'T1'~;

1

(d) u(O) = u(l), u'(O) = u'(l);

00

1 + 22: (cos 2n'T1'x cos 2n'T1'~
1

d2
These results can be extended to the case where L = - -d over the

x 2

interval (a, b) by making the change of variable y - a + (b - a)x,
'YJ a + (b a)~ and using the fact that

b(Y - 'YJ) 1= (b - a)b(y - 'YJ).
b -a

For example, if a - 0, b - 'T1', then formula (a) becomes this:

If L = - d
2

over (0, 'T1'), with the conditions u(O) = u('T1') = 0, then
dx2

11'1
d(:e - e) - 22: sin me sin n~.
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Boundary conditions are Then b(x - ~) =

(b) u'(O) = 0;

(d) u(O) = u'(O) = 0;

2 loo- cos kx cos k~ dk;
7T 0

(
ex. ) k2 dk

cos k~ + k SIn k~ k2 + ex2 ;

the first term is missin if Re ex > O.

-. . eP(x-e) dp, where a > O.
27Tl a-tOO

Finally, if L = - ;2 over ( - 00, 00), then

<5(x - ~) = _1 foo eik(x-~) dk.
27T -00



APPENDIX

PROOF OF THEOREM 4.7

We shall prove

Theorem 4.7. The improper eigenfunctions 1jJ(A) and 1jJ*(A') satisfy the
following relation:

(1p(A), 1p*(A'» = c5(A - A').

From (4.58) and (4.59) we have

(4A.l) <tp(A), tp*(A') - <c/>(}.), c/>*(A') <Lf'Mtp(}.), c/>*(A')

- (4)(A), Lf-1M*1p*(A'» + (L1-1M1p(A), Lf-1M*1p*(A'»

where, for convenience, we have. put

L 1 = L - A - iB,

b b A' + .2 - h lB.

Using the fact that 4>*(A') is an improper eigenfunction of L *, we get

(4A.2) (L11M1p(A),4>*(A'» = <M1p(A), Li-l4>*(A'»
(A' ). ie)-l(M1p(/.), ~*(}.'»,

and, similarly,

(4A.3) (4)(A), Ll-1M*1p*(A.'» = (A - A' + iB)-l(4)(A), M*1p*(A'».

Using (4.58) and (4.59) again, we see that

(4A.4) <MW(A), 4>*(A') = <MW(A), W*(A') + <MW(A), U-1M*W*(A'»

and

(4A.5) (1)(A), M*1p*(A'» = (1p(A), M*1p*(A'» + (L11M1p(A), M*1p*(A'».

The sum of the second and third terms on the right-hand side of (4A.l)
is the negative sum of the left-hand sides of (4A.2) and (4A.3). Using
(4A.4) and (4A.5) to transform the right-hand sides of (4A.2) and (4A.3),
we find that the sum of (4A.2) and (4A.3) is

(4A.6) (A' A ie)-'<},{tp(A), (L,-' Lt-1)lJ*tp*(A').

But
L:-1 - Lt-1 = (A.' - A - 2ie)Lt-1Ll-1;

cOl1sequently, (4A.6) becomes

A' - A- 2ie (L 1~ (A) Lt 1M. *(A'»

2'1
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Using the negative of this result for the sum of the second and third terms
on the right-hand side of (4A.l), we find that (4A.l) becomes

It is clear that the limit of the last term is zero as e~ 0; consequently,
from (4.57), we get the desired result,

<VJ(A), VJ*(A'» = ~(A - A').



5
PARTIAL DIFFERENTIAL EQUATIONS

Introduction

In this chapter we shall discuss some methods that can be used to solve
explicitly the most frequently occurring equations in mathematical
physics: the potential equation, the heat equation, and the wave equation.
These equations have in common the fact that they contain a particular
differential operator called the Laplacian. If Xh X2,' . , Xn are the
coordinates in an n·dimensional Euclidean space, the Laplacian of a
function U(Xh X2, •• " xn ) is

d2y, d2U d2,l(,

~U =0,
with appropriate boundary conditions on u. To define the heat equation
and the wave equation, we use n space coordinates XI, X2, •• " Xn and a
time coordinate t. Let U(Xh X2, •• " Xm t) be a twice differentiable func­
tion of these n + 1 coordinates; then the heat equation is

U=-
8t2

OU
~u- -

ot'

with suitable conditions on u, and the wave equation is

LX 82,l(,

with suitable conditions on u.
Before discussing the conditionst suitable for a solution of the potential,

heat, or wave equations, we shall define the linear vector space of functions'

dimensional space defined by the coordinates Xh X2, • • " Xn or in the
(n + 1)-dimensional space defined by the coordinates Xh .• " Xn , t, and
let dr denote the Euclidean volume element in either space. The linear

l' A full treatment of this topic will be found in Courant·Hilbert, ;AJefhods ttf]tJafhe
matica/ Physic,f, Vol. II, reprint, Interscience, New York, 1943.
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vector space \ve shall use is the space of all functions 'It of either n or
n + 1 coordinates such that u is of integrable square over R, that is,

The scalar product of two functions 'll., 'll is then defined as follows:

<U, v) = JRuV dr.

We shall consider linear differential operators such as the Laplacian ~,

ot
in this vector space. For simplicity in writing, we shall denote the time
derivative by the symbol P. The domain of the operator will be the set of

all functions 'It in the vector space such that 002
U

(i, j 1, 2, . n) are

piecewise continuous and of integrable square and such that on the
boundary B of R there exists a linear homogeneous relation involving u
and its normal derivative. The domain of the operator P will be the set

of all functions .. in the vector spaee such that~ is piecewise oontinuous

and of integrable square and such that u = 0 for t = o. The domain of
p2 will be the set ofall functions u such that u and Pu belong to the domain

ot2

and of integrable square and if u = ou = 0 for t = o.ot
From Green's formulat in n-dimensions we have

(5.1) f (u~v - v~u) dr = f (u ov - V
OU

) dS.
R B on on

Here B is the boundary of the region R, dS is the surface element on the

boundary, and 0 is the derivative normal to the boundary. Another oneon
of Green's formulas that will be useful is this:

(5.2) f u Au tire ,}u ase rt~\2 + ... + {~\ 21,ud"-or. _
R IB on ~ ~

Formula (5.1) implies that ~ is a formally self-adjoint operator. Formula
(5.2) shows that the operator - ~ is positive-definite if the conditions on
the domain are such that the integral over B vanishes.

Note that since the adjoint of Pis - P, the adjoint of the heat operator
t A proof of this result will be found in Kellogg, Foundations of Potential Theory,

Springer, Berlin, 1929.
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6. - P is 6. +P, and the wave equation operator 6. - p2 is formally self-

Green's Functions for Partial Differential Operators

We shall find that lItany of the IItethods we have used in the study of
ordInary differential equations can be extended to partIal differential
equations. As in Chapter 3, we shall find that the inverse of a partial
differential operator M will be an integral operator. The kernel of the
integral operator will be called the Green's function of the operator. The
Green's function G is the actual or symbolic function which is the solution
of the equation lvlG - 6-function in the n or (n + i)-dimensional space.

To explain the meaning of such a ~-function, consider the case of three­
dimensional space.

Let the three-dimensional d-function d(x, y, z; ~, 1}, C) be a symbolic
function defined by the follo'Ning equationt--.-:------------

(5.3) JJJ c/>(~, 'fJ, C)~(x, y, z; ~, 'fJ, C) d~ d'fJ dC = c/>(x, y, z)

for all continuous functions p(x, y, z) which vanish outside a finite region
of xyz-space. If ~(x - ~), ~(y - 1}), and ~(z - C) are the one-dimensional
~-functions defined in Chapter 3, we have

(5.4) JJJ c/>(~, 'fJ, C)~(x - ~)~(y - 'fJ)~(z - ~) d~ d'fJ dC = c/>(x, y, z).

Comparing (5.3) and (5.4) we see that

~(x, y, z; ~, 'fJ, C) = ~(x - ~)~(y - 'fJ)~(z - C).

A similar argument may be used in n or (n + I)-dimensional space; there­
fore, we conclude that the n-dimensional ~-function is the product of n

"
To illustrate these ideas we shall consider the case where

(
02U 02U 02U)

Mu=- - +- +-ox2 oy2 OZ2

one-dimensional d- functions ~

and the dOlltain of lvf is the set of functions u with piecewise continuous
second derivatives and such that

JJJ u2dxdydz< 00, JJJ (MU)2dxdydz< 00.

Just as in Chapter 3, we may extend the definition of M to functions w
not in the domain of M. Since M is self-adjoint, we put

JJJc/>MW dx dy dz = JJJ wMc/> dx dy dz,

where iP is any function in the domain of M. ThIS equatIon defines the
perhaps symbolic function Mw.

t The limits 011 all Integrals will be from - 00 to 00, unless otherwise noted.
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The Green's function for the operator lr.,{ will be the perhaps symbolic
function G, which is the solution of the equation

(5.5) MG = - Gxx - Gyy - Gzz = ~(x - ~)~(y - 'fJ)~(z - C).

If J(x, Y, z) is any contInuous functIon which vanIshes outside a finIte
region, it is easy to show that the integral

(5.6) u(x, Y, z) = 555Gf(~, 'fJ, C) d~ d'fJ dC

is a solution of the equation

Mu=f

This result shows that the integral operator whose kernel is G, that is, the
integral operator in (5.6), is the inverse to M.

To solve (5.5), we use some special properties of the operator M. First,
we note that if we put x' = x -~, y' = y -1j, z' = z - C, then (5.5)
becomes

(5.7) MG = - Gx'x' - Gy'y' - Gz'z' = ~(x')~(y')~(z').

Next, we introduce spherical polar coordinates as follov/s:

z' = r cos (),

x' = r sin () cos 1p,

y' = r sin () sin 'f/J.

Note that 0 < r < 00, 0 < B< Tr, and 0 <1p < 2Tr. It is easy to showt
that in these coordinates

5.8

but what happens to the three-dimensional ~-function? By definition, we
have

----ff-fef>(X', y', z')c5(x')c5(y')c5(z') dx' dy' dz' ef>(0, 0, 0).

If we introduce spherical polar coordinates into this integral, it becomes

(5.9) 5000f: 50
217

4>(r, (), 1p)~(x')~(y')~(z')r2 sin () dr d() d1p = 4>lr=o,

In spherical polar coordinates the origin r = 0 is a singular point of the
coordinate system because the origin has every value of () and 7p as a co-
ordinate. Since 4>(r, (), 1p) is continuous and single-valued at the origin,
its value there is independent of the value of () and 1p. For example, if
p(x, y, z) - 2 + x2 + yz, then 4>(r, (), 1p) - 2 + r2 sin2 () COS2 1p + r2 sin (j

t See Courant, Diflelential and Integral Ca{cu!tts, Vol. II, Interscience, New York
1936.
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cos () sin 'fjJ, and the value of c/> for r 0 is 2, no matter vv'hat the values of
(J and 1jJ are. Consequently,

(17 (217 (00 c5 (r) .
________~ c/>(r, 0, 1p)---;:2 r2 sIn 0 dO d1p dr

~--------~Jo Jo '111=0 sin 0 dO dtp

Comparing this result with (5.9), we see that

4m/>I-r=----;;0-.--------

(5.10) c5(x')c5(y')c5(z') = c5(I~.

Formula (5.10) is the expression in spherical polar coordinates for the
three-dImensIOnal 3-function located at the origin. Later, we shall obtaIn
an expression in spherical polar coordinates for the three-dimensional
c5-function located at an arbitrary point.

With the help of (5.8) and (5.10), equation (5.7) may be written in
spherical polar coordinates as follows:

MG _ c5(r)

where the left-hand side is defined by (5.8). Since the right-hand side is
independent of () and "P, the function G will not depend on these co-
ordinates, and therefore the equation becomes

NG = -! !-(r2 8G) = _ c5(r)
r2 8r 8r 477r2

or, simply,

(5.11) r 2NG = - ~.

The operator N will be formally self-adjoint if we use the following
scalar prodnct:

<ep, 1p> = f: ep(r)1p(r)r2 dr.

If we recall the definition of the domain of M, we see that the domain
of the self-adjoint operator N is the set of all functions 4>, defined for
o< r < 00, which have piecewise continuous second derivatives and are
such that

____________fof\-00----'leP"--'(.--,r)t-2__r2---'d=r_<--=---=-c00=---- _

and

LICXJ (Nc/»2r2dr < 00.
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Let us consider the extended definition of this operator .lv. We have

l
oo loo 1 0 ( oct»G(Nc/»r2 dr = G- - r2 - r2 dr
o 0 r2 or or

----------=~r2___+'(GU-'/eP"'...-1 ------>.G.I-¥1.eP'+4-)!; +r <fA ~(r2~)'-'----r2----""d'---}-r;---

therefore, since by the extended definition of N

________Jooo G(Nck)r2 dr = 1F1-
oo

--+ck->..=(NG=-,)r2----"d-=--rL-, _
Vle see that

foo roo 1 0 oG) (,..- t;
o c/>(NG)r2dr = Jo 1>r2or r2or r2dr + goc/>(O) - glc/>'(O),

where

r2NG =!- (r
20G

) + gl t5'(r) + got5(r),
or or

Consequently,

lim (r2G) and go
r~O r~O

where the differentiation on the right-hand side is to be understood in
the ordinary, not in the symbolic, sense.

These considerations show that, if G is to satisfy (5.11), we must have

_____----j3l23G~f---=--H--------& ~r ar ~ 0,

gl = 0 and go = - (4rr)-1. The solutions of the homogeneous equation

!-(r
20U

) = 08r _ 8r_

are given by U - ar 1 + b, where a and b are arbitrary constants. From
the fact that go = - (4rr)-1, we see thatt

G = (47Tr) -1.

In rectangular coordinates we have

G = (47T)-1(x'2 + y'2 + Z'2)-1/2

or
G = (47T)-1[(x - ~)2 + (y - r;)2 + (z - C)2]-1/2.

Putting this result into (5.6), we obtain the well-known result that

(5 12) ( ) - 1 fff f(~, r;, C) dt d dt"
• U x, y, z - 47T [(x _ ~)2 + (y _ r;)2 + (z _ C)2]1/2 ~ r; ~

is a solution of

(5.13) uxx + Uyy + U u - - f(x, y, z).
t We have implicitly assumed that G goes to zero as r goes to infinity.
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Equation (5.13) is called Poisson's equation. It is the equation for the
potential u produced by a charge distribution with volume density
f(X, Y, z). The formula for G shows that it is "the potential produced by
a point charge located at x = ~, Y = !J, Z = C. Formula (5.12) now has
an interesting physical interpretation. It shows that the potential may
be considered as if it were produced by point charges at every point
(~, 'Yj, C) with strengthf(~, 'Yj, C).

PROBLEMS

5.1. Find the Green's function for the operator M = - 8x 2 - 8
y

2 - 8z 2 + k 2

over the entire xyz space. (Hint. Proceed as in the text by transforming the
source point to the origin and introducing spherical polar coordinates.)

~.2. Show that the Green's function for the n-dimensional Laplacian (n > 3)
h . d· . t .over t e entIre n- ImenSIOna space IS

[

n ] -(n-2)j2
, G = [en - 2)Wn ]-1 L(Xk - ';k)2

1

were W n IS t
1

source point to the origin and introduce spherical polar coordinates. If
n

r" - {Ix!'", the equation for G reduces to ~ (rn '~) - - ron'll(r}.}

5.3. ShoW, that the Green's function for the two-dimensional Laplacian over
the entire two-dimensional space is G ~ - (41T)-1 log [(x - ';)2 + (y - 11)2].

Separation of Variables

The method which was used in the preceding section to find the Green's
function is very special and depends strongly on the high degree of sym­
metry of the problem. This symmetry enabled us to reduce the partial
differential equation in rectangular coordinates to an ordinary differential
equation in polar coordinates. In many applications such a high degree
of symmetry does not exist, and we must use other methods to solve the
partial differential equation. In this chapter we shall discuss the method
of separation of varzables; one of the few methods avaIlable for finding
explicit solutions to partial differential equations.

The method may be easily understood by noting how it is used in the
following problem.

Find a function u(x, y) defined over the rectangle 0 < oX < a, 0 < Y < b
such that

(5.14)
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and such that

(5.15) u(O, y) = u(a, y) = u(x, 0) = u(x, b) = O.

The classical approach to the method of separation of variables begins
by cOllsidel ing the homogeneous equation

(5.16) wxx + wyy = 0

and by trying to find solutions of this equation which are the product of a
function of x by a function of y. We put w(x, y) = X(x) Y(y) and substi-
tute this into (5.16); then we get

X"y Xy" 0
or

X" Y"
- - - -
X y

The left hand side of this equation is a function of x alone; the right-hand
side is a function of y alone. The only way in which a function of x

can be equal to a function of y is for both functions to be constants. We
call this constant k2 ; then we have

Y" = - k 2 Y.

This shows that functions of the form w = ekx sin ky are solutions of
(5.16). We now must try to find linear combinations of these functions
which are solutions 0£(5.14) and which satisfy (5.15).

Instead of continuing with this classical approach, we shall discuss
another approach which is more in keeping with the spirit of our dis­
cussion of operators. What is the operator that appears in (5.14) and
(5.15) ? It is the operator M such that

Mu = U XX + U yy

and such that its domain is the set of square-integrable functions u(x, y)
which have square-integrable second derivatives over the rectangle
0< x < a, 0 < Y < b and which satisfy (5.15).

The distinguishing property of M which will enable us to find an explicit
solution of the problem is this: The operator M is the sum of two commu­
tative operators N1 and N 2• The operator N, is defined as

for all square-integrable functions u(x, y) which have square-integrable
second derivatives in the rectangle and satisfy the conditions

u(O, y) - u(a, y) - O.

Similarly, the operator N 2 is defined by the equation
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for all square-integrable functions u{x, y) which have square-integrable
second derivatives in the rectangle and satisfy the conditions

u(x, 0) = u(x, b) = O.

Note that the domaIn of M is made up of all functions u(x, y) whIch are
simultaneously in the domain of N 1 and N 2, and that for these functions
N 1N 2u = N 2N 1u.

We shall show in the next section that if N 1 and N 2 commute, we may
treat .J.V2 as a constant in the process of finding the inverse of l-ll + .J.V2 .

Let us see how this applies to (5.14). Write it as follows:

(5.17) uxx + N 2u = - ~(x - ~)~(y - r;),

where u(O, y) = u(a, y) = 0 and where we consider N 2 as a constant.
Tbis means that (5 17) wi]) be considered an ordinary differential equation
for functions of x, which may depend also on a parameter y. Using the
techniques of Chapter 3 to solve (5.17), we find that its solution is

(5.18) u = (k sin ka)-l sin kx sin k(a -~) ~(y - n), 0 <x < ~

= (k sin ka)-l sin k( a - x) sin k~ ~(y - n), a > x > ~,

where k = VN2• This result, however, must still be interpreted because
it contains a complicated function of the operator N 2 . Note that u has
been written in such a form that the function of the operator comes before
the function it acts on, namely, dey - r;).

We have seen in Chapters 2 and 4 that the effect of a function of an
operator acting on a vector can be determined easily if the vector is
expressed in terms of the eigenvectors of the operator. In the case we are
considering, N 2 is an ordinary differential operator acting on functions of
y, which may depend also on a parameter x. The eigenvalues and eigen­
functions of N 2 are easily obtained. From Chapter 4 we find that

2~ . ~n7Tr;\
~(y - r;) - bZ SIn~-~ b J-'-------

1

which shows that the eigenfunctions are sin n7TY/b and the eigenvalues are
- (n7T/b)2; then, if ep(N2) is an analytic function of the operator N 2, we
have

Before applying this result to interpret the expression we obtained for u,

we note that, since k = VN 2, the eigenvalues ofk will be purely imaginary,
equal to in7T/b; ~tnd consequently the sin tenns will become sinh terms.
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Vie find that (5.18) becomes

(5.19) 11, = 2~ sinh (n71'xjb) sinh {n71'(a - ~)jb} sin (n71'yjb) sin (n71'rjjb)
b L, (n71'jb) sinh (n71'ajb) ,

1

These formulas give the solution to (5.14). They are also formulas
for the Green's function of the two-dimensional Laplacian satisfying the
conditions (5.15); consequently, they may be used to solve the equation

(5.20) wxx + Wyy - - f(x, y),

where v/ satisfies the same conditions as 'U, namely,

W(O, y) = w(a, y) = w(x, 0) = w(x, b) = O.

If we multiply (5.14) by f(~, rj) and integrate over the rectangle, we can
see that

w = fo
a J: f(~, rj)u(x, y; ~, rj) d~ drj

with U given by (5.19) will be the desired solution of (5.20) satisfying the
given boundary conditions.

The equation (5.20) could have been also solved wIthout using the
Green's function by writing it as follows:

Wxx + N 2w = - f(x, y),

where w(O, y) w(a, y) 0. This equation is to be considered an
ordinary differential equation for w, a function of -x which incidentally
depends also on y. By the techniques of Chapter 3 we find that

w(x, y) = (k sin ka)-l [sin k(a - x) l'\-x_si-'---n----'k--""'-~__.l_t--'--(~"'-Z,__<Ly~)_=_=_d~"______ _

+ sin kxf: sink(a - ~)f(~, y) d~],

where k = VN2• Note that again the function of the operator N 2 has
been written before the function !@, y) it acts on.

Using the methods of Chapter 4, we may obtain the spectral represen-
tation of N2, and from this representation we get the following expansion
off in terms of the eigenfunctions of N 2 :



We can now interpret the meaning of the function of the operator N 2

acting on f(~, Y). We find that

w(x, y) =

2~ sinh {mr(a - x)/b} sin (mry/b)f:J: sinh (mrl;/b) sin (mr'YJ/b)f(l;, 'YJ) dl; d'YJ

b 1 ( (n'rr/bl sinh Vl'Tra/b)

+~2: sinhen",x jb) sin en"'!!/b)JJ: sinh{=(a -Wb}sinen"''7/b)f(l;, '7)~ drt.
b 1 (n'Tr/b) sinh (n'Tra/b)

This result is the same as that we would find by using the Green's function.

PROBLEMS

5.4. Find the Green's function for the two-dimensional Laplacian with the
conditions (5.15) by treating N] instead of N 2 as a constant.

5.5. Find the Green's function for the two-dimensional Laplacian with the
foHowing sets of conditions:
(a) u(x, 0) = u(x, b) = u(O, y) = uxCa, y) == 0, 0 < x <a, 0 < y < b.

(b) u(O, y) = tXUxCO, y), u(x, 0) = fJuy(x, 0), u(a, y) = u(x, b) = 0,
0< x < a, 0 < y < b, tX and fJ are fixed constants.

(0) 'U(O, y) u(x, 0) - u(x, b) 0, 0 < x < 00, 0 < y < b.

5.6. Solve U xx + U yy + k 2u = - ~(x - ~)~(y - 'Yj), with the following sets of
conditions:
(a) u(x, 0) = 0, - 00 < x < 00, 0 < y < 00.

(b) u(x, 0) = ux(O, Y) = 0, 0 < x < 00, 0 < Y < 00.

(e) uy(x, 0) = tXu(x, 0), tX a fixed constant, - 00 < x < 00, 0 < y < 00.

(Hint. Use the outgoing wave condition to define the operator, or, equivalently,
assume that Jm k > 0 and assume that u is bounded at infinity.)

The Inverse of the Sum of Two Commutative Operators

We shall now justify the statement made in the previous section, namely,
that if NI and N 2 commute, N 2 may be treated as a constant in the process
of finding the inverse of NI + N 2• For the sake of simplicity, we shall
treat precisely the case we discussed in the previous section. We con­
sider the space <S of real-valued functions I(x, Y) which are square
integrable over a rectangle whose sides are parallel to the x and y axes.
We assume that Nl is a self-adjoint differential operator with respect to
x and with boundary conditions acting on x alone and that N 2 is a self-
adjoint differential operator with respect to y with boundary conditions
acting on yalone. Let AI' A2, ••• be the eigenvalues and vl(y), vly) ...
be the corresponding normalized eigenfunctions of N 2• We assume that
the inverse of Nt :+- Ale is a bOWlded operator for every eigenvalue Ak and
that the bound is independent of )'k' We assume finally that the eigen-
functions of N.... l\rC complete in the followiJ1l',sel1§e:
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For every function f(x, y) in $ the expansion

where
---------H;,OCkd-i(x{j-f)~Sf(x, y)vk(y) dy,

converges to f(x, y) in the sense of the norm in $. We shall prove

Theorem 5.1.t {f Nl and N 2 are the operators described above and if
f(x, y) is in $, then

(5.21)
00 00

(Nl + N2)-lj= (Nl + N2)-l2 ociX)vk(y) = 2 (Nl + Ak)-locix)vk(y)·
1 1

Let C be the bound for all the operators (IV1 + Arc) 1; then for any
function g(x, y) in CS we have

I(Nl + Ak)-lgl < Clgl,

where 19j denotes the norm of g in (S. Using this fact and the fact that
the vk(Y) are mutually orthogonal, we see that

00 00

12(Nl + Ak)-lOCk(X)viy)12 = 2 1(Nl + Ak)-lOCk(x)12
k~ k~

00

< C22Iock(X)12 .
k=j

00

By assuITlption, the senes Zlcxk(x)12 converges. Therefore, the smn
1

00 .

2Iock(X)12 and also the sum
k=j

00

k=j

converge to zero as j goes to infinity. This proves that the right-hand
'side of (5.21) converges in the sense of the norm.

To finish the proof, 'Ne must show that the right-hand side converges
to the left-hand side. Because lil and li2 commute, we have

m m .

(N! + NJ;jjN! + AJ-lOC,,(x)vk(y) = ~(N! + Ak)-l(N! + NJock(x)V,c(?I).
1 1

t For a gener aJ ization of this them em see Proceedings of/he Conference on BiJ/erentkll
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Since vk(y) is an eigenfunction of .N2, the right-hand side of this result
becomes

m mz: (N1 + Ak)-1(N1 + Ak)ocix)viy) = z: OCi~)vk(Y)'
1 1

m

By assumption, the SUIn ZOCiX)Vk(Y) converges to f(x, Y); consequently,
1

the sum

1

converges to f(x, y). This proves the theorem.
To see how Theorem 5.1 justifies the statement that N 2 may be con-

sidered as a constant in finding the inverse of NJ. +~, notice that in
(5.21) each term is obtained by considering the inverse of .IV). plus some
constant. Therefore, if we have a method for inverting N1 plus an arbit­
rary constant A, the inverse of N1 + N 2 will be obtained from the inverse of
N1 + A by putting A = AI, A2' ... , which are the eigenvalues of N 2, and
combining these results according to (5.21). We may summarize this
procedure as follows:

"Rule. If N 1 and N 2 commute, the inverse of N 1 + N 2 may be obtained
by considering N 2 as a constant. The result will be a function of the
operator N 2 and should be interpreted by using the spectral representation
ofN2•

Another way of looking at this rule may clarify the reason for its
applicability The essential reason is the fact that NJ. and N 2 commute
We have seen in Chapter 2 that, if two operators commute, the null space
of one operator is an invariant manifold of the other; therefore, the
null space of N2 - Ais an invariant manifold of N1 . If A is not an eigen­
value of N2, the null space of N 2 - A is just the zero vector; if A is an
eigenvalue, the null space of N 2 - A is the space of eigenvectors corre-
sponding to that eigenvalue. Note that if v belongs to this null space,
N 2V = AV so that on this null space the effect of N 2 is just multiplication
by a constant. If the eigenvectors of N 2 are complete, the whole space
<S will be the direct sum of these spaces of eigenvectors of N 2' This
lneans that CS is a direct sum of invariant manifolds of Nh on each of
which the effect of N2 is multiplication by a constant A; consequently, on
each invariant manifold we may replace N1 + N 2 by N1 + A.

A siInilar discussion may be applied to more general combinations of
operators than the sum. For later use we state the following result.

Consider the space $ defined before. Let Ah A2, •• " An be self-adjoint
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differential operators with respect to x and let Bh B2, •• " Bn be self adjoint
differential operators with respect to y. Suppose that the operators Bh

B2, .. " Bn commute and have a complete set of normalized eigenvectors
VI(Y), V2(Y), ... such that

Then, iff(x, y) belongs to $, we have

(5.22) (AIBI + ... + AnBn)-lf = (AIBI + ... + AnBn)-I~(Xk(X)vk(Y)

00

- ZO'lkAI + ... + AnkAn) 1(Xk(X)Vk(Y)'
k=l

For a proof of this result we refer to Problem 5.7. As an illustration
of this result, consider the operator

where U is a real-valued square integrable function of rand (), and where
p is a constant. If we put

Alu = r-l(rur)r' A2u = r-2u, Aau = p2u

and

then

From the above result, we see that

if J'b ;'2' . . . are the eigenvalues of ~22 and Vl(O), V2(O), . . " the corre-

sponding eigenfunctions.

PROBLEM

5.7. Prove (5.22). (Hint. Use the method of Theorem 5.1.)

Alternative Representations

Let us return to the question we considered previously, namely, to find
a function u(x, y) such that

(5.14) uxx I uyy f5(x ~)f5(y r;)

and such that

(5.15) u(O, y) - u(a, y) - u(x, 0) - u(x, b) - O.

We solved this before by putting
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and considering N 2 as a constant while we found the inverse of N 1 + N 2•

However, this problem could be solved just as readily by considering N 1

as a constant while we find the inverse of N 2 + N 1. The details of this
solution are as follows

Write (5.14) as
Uyy + N 1u - - ~(x ~ ~(y - 'YJ),

where u(x,O) = u(x, b) = o. The solution of this equation is

u (p sin pb) 1 sin py sin p(b 'fJ) ~(x ~), 0 < Y < 'YJ

= (p sin pb)-1 sin pCb - y) sin PTJ b(x - ~), TJ < y < b,

where p = VN1. Again, the solution has been written so that the function
of the operator N 1 comes before the function b(x -- ~) that it acts upon.
From the spectral representation of N h we find that

b(x - ~) = (2/a)~ sin m;x sin m;g.
~

1

Using this, we obtain the following formula:

(5.23)

U(x y) = 2~ sinh (m-rry/a) sinh {m7T(b - 'YJ)/a} sin (m7Tx/a) sin (m7T~/a)
, a~ (m7T/a) sinh (m7Tb/a)

O<Y<'f}

= ~~... sinh (m7T'YJ/a) sinh {m7T(b - y)/a} sin (m7Tx/a) sin (m7T~/a)

a -f (m7T/a) sinh (m7Tb/a)

'YJ < Y < b.
Note that, because of the symmetry of the problem, (5.23) could have

been obtained from (5.19) by interchanging a and b, x and y, ~ and 'YJ.
The fact that there exist two different representations, (5.19) and (5.23),

for the Green's function defined by (5.14) and (5.15) proves useful in
applications. The series in (5.19) and (5.23) converge for all values of
x and y except x = ~, y = 'YJ, but for applications it is important that the
series converge rapidly. In (5.19) u(x, y) is expressed as a Fourier series
in y but in (5.23) it is expressed as a Fourier series in x. The rapidity of
convergence of these series will depend on the order of magnitude of the
coefficients for large values of n.

Consider the coefficient in (5.23). We put

sinh {n7T(b - y)/a} sinh (n7T'YJ/a)c = ------::~~~_:__:_--"'---

n sinh (n7Tbja)
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For large values of n, the negative exponentials can be neglected compared
to the positive exponentials. Then, approxinrately,

en17(b-y)/aen1TtJ/a e n17(T/-y)/a
c = ---:-:---

n 2en17b/a 2

Note that Cn appears as part of the coefficient in the first expression in
(5.23), where y > 'Y). We see then that Cn approaches zero exponentially
with n more rapidly as the difference between 'Y) and y increases. In the
same way, it can be shown that a similar part of the coefficient in the
first expression in (5.23) is appt oximately

!en7T(Y-T/)/a

so that it, too, approaches zero exponentially with n since 'Y) > y.
Similarly, the corresponding coefficients in (5.19) are approximately

equal to
!e-n17(x-~)/b

and, therefore, -also converge to zero exponentially with n, the more rapidly
as the difference between x and ~ increases. We may conclude then that
to find the value of the Green's functIon for points at which x differs
markedly from ~, the representation (5.19) should be used, but for points
at which y differs markedly from 'Y), the representation (5.23) should be
used.

We shall find that the conclusions in this problem are typical of the
general situation where the operator can he separated into the sum of
two commutative operators. There will exist two distinct representations
of the Green's function, one using x-eigenfunctions, the other using y-eigen­
functjons For points whose x-coordinate differs markedly from the
x coordinate af the singularity of the Green's function, the value of thc)
Green's function can be found more quickly from the second representation.
For points whose y-coordinate differs markedly from the y-coordinate of the
singularity -of the Green's function, the value of the Green's function should
be found from the representation using x-eigenfunctions.

PROBLEM

5.8. Find the alternative representations for the solutions in Problems 5.S
and 5.6.

Boundary Value Problems

We saw in Chapter 3 that, by extending the definition of the operator,
equations with non-homogeneous boundary conditions may be written
as non-homogeneous equations with homogeneous boundary conditions.
We have shown preVIously that the Green's function may be used to solv~

a non-homogeneous equation with homogeneous boundary conditions.
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Consequently, the Green's function may be used to solve boundary value
problems.

An illustration will clarify this. Suppose that we wish to find a function
vex, y) such that

in some two-dimensional region R bounded by a closed curve C and such
that v = h(s), a known function, on C. Let us denote by ~ the operator
such that

and such that u = 0 on c. We shall extend the definition of the operator
~. If w is any function in the domain of ~, the extended meaning of ~
will be defined by the following:

on
the arc length along C. From the definitions of~ and of v and from (5.24)
we see that

(5.25) ~v - vxx + vyy - h(s)de- - h(s)de,
where c5~ is the symbolic function defined by the equation

f fR c5~w(x, y) dx dy = - fa ~: ds.

Suppose that g(x, y; ~, 'YJ) is the Green's function for A, that is, suppose
that

~g = - c5(x - ~)c5(y - 'YJ);

then the solution of (5.25) is

(5.26) V = ffRh(s)c5~g(x, y; ~, 'YJ) d~ d'YJ

r og .
__________-~J-oh(s) an (x, y,~, 'YJ) ds.

It is clear that a similar method may be used in more complicated prob-
lems. However, it is also possible to solve these problems directly without
the use of the Green's function. For example, consider the following
problem:

Find the function u(x, y) such that

(5.27)
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over the rectangle 0 < x < a, 0 < '!J < b and such that

(5.28) u(O, y) = u(a, y) = u(x, b) = 0 and u(x, 0) = hex).

Again, put Nlu = U xx and N 2u = U yy• Let us first consider Nl as a
constant; then (5.27) becomes

where
u(x, 0) = hex), u(x, b) = O.

The solution of this problem is easily seen to be

(5.29) u = (sinpb)-l sinp(b - y) h(x),

where p = VNl . Note that again the function of the operator N l is
written before the function hex) it acts upon. From the spectral represen-
tation of Nt, we have

00

hex) = ~ Lsin (nTrxja) J: h(~) sin (nTr~ja) d~.
1

Substituting this in (5.29), we obtain the following solution for (5.27):

(5.30) u =
00

~L[sinh (nTrbja)]-l sinh {nTr(b - y)ja} sin (nTrxja) f: h(~) sin (nTr~ja) d~.
1

This result could have been obtained by using (5.26) with the representa-
tion (5.23) of the Green's function.

We may obtain an alternative representation for u by treating N 2 as a
constant. Using the extended definition of N 2, we may write (5.27) as
follows:

U xx + ~u h(x)c5'(y),

with the condition u(O, y) = u(a, y) = O.
The solution of this equation is

(5.31) u = (k sin ka) l[sin k(a - x)Lft---x_si_n_k_~_h--,---(~)_d~ _

+ sin kx f: sin k(a - ~) h(~) d~]c5'(Y)'
where k = VN2•

Using the spectral representation of N 2, we have

22:
00

d'(y) - - (2lb)~(n7Tlb) sin (n7Ty/b).
1
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Substituting this in (5.31), we obtain another representation for the
solution of (5.27). It is as follows:

(5.32)

+ sinh (n7Tx/b) Ixasinh {n7T(a - ~)/b}h(~) d~].

This also could have been obtained by using (5.26) with the representa-
tion (5 19) of the Green's function

An Apparent Contradiction

Equation (5.32) seems to contradict the last boundary condition in
(5.28), that is, u(x, 0) = hex) because in (5.32) u(x, 0) = O. However, the
contradiction is easily explained. Formula (5 32) is not a continuous
function of y as y approaches zero. As y approaches zero, u(x, y) will
approach hex) but u(x, 0) = O. To prove this statement, we must give a
short discussion on Fourier series.

Consider
00

(5.33) 8 = I en sin ny
1

and suppose that, for large n,

en ,
n n2

where al is a constant and a2(n) is a bounded function of n. If al = 0,

La~) .
Since a2(n) and sin ny are bounded for all values ofn and y, we have

18':5: C~~,
-----------------'~ £iiiimi&

where C is some constant. This shows that the series converges uniformly
for all values of y; therefore, 8 will pc a continuous function of y for all
values of y.

If al i= 0,

(5.34)
n n

The second sum is a continuous function of y for all values of y. The
first sum is easily shown to be

1T-y
al 2 ' 7T > y > o.



272 PRINCIPLES OF APPLIED MATHEMATICS

This shows that as y approaches zero, S in (5.34) approaches 1f'tlIj2.
If, instead of (5.33), we have

s = ~cn sin (n7Ty/b),

and llt is defined as before, S approaches 01'.,,/2 as Y approaches zero.
Comparing this series with that in (5.32), we see that

2 I
c =- roo.J

n b sinh (n7Ta/b)

where' .. indicates the two terms in brackets in (5.32). An integration
by parts give!)

rx sinh (n7T~/b)h(~) d~ = h(~) cosh (n7T~/b) IX _ rx h'(~) cosh (n7T~/b) d~
Jo (n7T/b) 0 Jo (n7T/b)

and

--J: sinh {n7T(a - ~)Ib}h(~) d~
= _ h(~) cosh {n7T(a - ~)/b} la + fa h'(~) cosh {n7T(a - ~)/b} d~'

(n7T /b) x x (n7T /b) ,

consequently we have

c =~ h(x) [Sinh{n7T(a x)/b}cosh(rmx/b) +cosh{1m(a X)/b}SinhCn7TX/b)]
n b (n7T/b) sinh (n7Ta/b)

plus higher order terms in I/n. We find that
2h(x)

7T
therefore,

lim u(x, y) = hex).
Y-+O

PROBLEMS
5.9. Solve the following boundary value problems for the equation Uxx + uVY+ k 2u = 0, k a constant:

(a) u(x, 0) = lex), u(x, (0) outgoing, 0 < y < 00, - 00 < x < 00.

(b) u(x, 0) - 0, u;:c(O, y) - g(y), u(x, 00) and u( 00, y) outgoing,
o< x < 00, 0 < y < 00.

(c) l,t(x, 0) = f1(x), u(x, b) = /2(x), u(O, y) = gl(Y), u(a, y) = g2(y),

o< x<a, 0 < Y< b.
Find two representations for each solution.

5.10. Solve the following boundary value problem:

uxx + lU,yy + U zz = 0, (0 < x < a, 0:::;: y < b, 0:::;: z :::;: c),

where u(x, Y, 0) = I(x, Y), 'It(X, y, c) = u(O, y, z) = u(a, Y, z) = u(x, 0, z)

x 11

82 82

u(x, b, z) O. (.I.l[illf. The operators 8 2 and 8 2 may be treated as con..

stants while the z-equation is being solved. Then the spectral representation fol'
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82 82

that -2 and -2 are constant for the x-equation.
8y 8z

273

5.11. Solve the following boundary value problems for the equation

rr r r r2

(a) u(r, 0) = u(r, 277), uf)(r, 0) = uf)(r, 277), u(O, 0) regular, u(a, 0) = h(O),

o< (J < 277, 0 < r < a.
(b) u(r,O) = u(r, 77) = 0, u(a, 0) = h(O), u(oo, 0) = 0, 0 < 0 <77,

a <r < 00.

(c) u(r, 0) = 0, uo(r, 77) = 0, u(O, 0) regular, u(a, 0) = h(O), 0 < 0 < 77,

O<r<a.

Changing One Representation into Another

In the examples of separation of variables that have been discussed so
far, we have seen that the solution of the problems considered could be
represented in two different ways: either in terms of x-eigenfunctions or
in tel IDS of y-eigenfunctions. Vie have seen that one representation may
be more useful than another because it converges more rapidly in a
certain region.

In this section we shall obtain a contour integral representation from
which the two representations can be derived. Or, alternatively, if we
start with one eigenfunction representation, the contour integral repre­
sentation can be obtained and then from this the other eigenfunction
representation. This latter procedure will be used in some cases to obtain
a spectral representation for an operator which is not of the type con-
sidered in the previous chapter.

For the sake of simplicity we shall consider only the case where the
operator is °a sum of two commutative operators N1 and N 2• Just as in
the hypothesis of TheorelIl 5.1 we shall aSSUIIle that !{l is a self-adjoint
differential operator actIng on x alone and N 2 IS a self-adjoint differential
operator acting on y alone. Let 11.1 , 11.2, ••• be the eigenvalues and
v1(Y), v2(y), ... be the corresponding normalized eigenfunctions of N2•

We assume that the inverse of Nt + ;'lc is a bounded operator for every
value of Ak , real or complex, with a bound independent of Ak • Vie assume
finally that the eigenfunctions of !{2 are complete. We shall prove

Theorem 5.2. If NI and N 2 are the operators described above and if
f(x, y) is in the space $,. then
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where en is any closed contour in the Aplane which contains the points
A - AI, ..., An, and does not contain any point of the spectrum of lVl .

The expansion ofI in terms of the eigenfunctions of N 2 is

ftc, y) - ~llix)viy),

where

llk(X) = JI(x, Y)Vk(Y) dy.

From the properties of the eigenfunctions, we have

Substituting this formula in the right-hand side of (5.35), we get

______2'\-1~.1 (N, ±A)-1(A-N2)fdA=2--.!.-.!. (N!+ A)-l~(A - Ak)-lllk(X)VJ,(y)dA.
7Tl TOn 7Tl rUn '"

Because of the definition of e,h this integral reduces to a sum of integrals
around the poles Ah A2' ..., An of the integrand, that is, the integral is
equal to

n

_~_l~.2;+--f, (N! + A)-l(A - Ak)-lllix)viy) dA = 2; (N! + Ak)-lllk(X)Vk(y).
27Tlk=1 k

By Theorem 5.1 the limit of the right-hand side of this equation is
(Nl ± N 2)-1j. This proves the theorem.

Since the eigenvalues of N 2 have Infinity as a limit pOInt, the contours
Cn will go to infinity. We may usually replace the contours Cn by a
single contour C which starts and ends at infinity, encloses the spectrum
of N 2 , and does not contain any point in the spectrum of -Nl . In
practice, such an integral can be obtained from the !/2-eigenfunction
representation of the inverse by the well-known methods for writing an
infinite sum as a contour integral. Often, by using Cauchy's theorem the
contour may be shifted so that it does not contain the spectrum of N 2 but
does enclose the spectrum of - Nt. In such a case the evaluation of the
contour integral by residues will give an expansion in terms of the Nl -

eigenfunctions. The example of the following section will illustrate this
point.

Example--Changing One Representation into Another

We shall illustrate the method of the preceding section by showing how
the formula (5.23) for the Green's function can be transformed into
formula (5.19). First, however, we shall prove the formula

00

--l--"'\----"\tft-I-----z~l-1-A---iI-n-n'"¥.+fl-I--=-+.,R.--t=~-=1-fc(k) SIn {k7T(a - xl/a)} dk(5.36)cn sin (nTTxja) (zl] ---o sin k7T •
1
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Here C is a contour starting at 00 ie in the complex k-plane, going in
a negative direction around the positive real axis, and ending at CXJ + ie,
while c(k) is an analytic function of k in the neighborhood of the positive
real axis and is such that c(n) = Cn, for n = 1, 2, ...

To prove (5.36), we notice that the only singularities of the integral
are poles at the zeroes of sin k7T, that is, at the points k - I, 2, ....
Evaluating the residues at these points, we find that the integral is

'" • f ~ }/ } '"

1 1

which proves (5.36).
As an example of this formula, consider the case where en = lin, and

a = Tl'. We find that

L -1 . (2 ')-1 Jsin {k(7T - x)} dkn SIn nx = l k . k .SIn Tl'

The integral may be evaluated by the following manipulations: In the
integral over the IO'Ner half of the contour C, replace k by k, and we get

Ln-1 sin nx = (2i)-1 J . + (2i)-1 Jc'p' pc+
as illustrated in Fig. 5.1. Since the integrand has no singularities in the

li'

-3 -2 -1 P' P\ 1 2 3

'"'-
Fig. 5.1

upper half plane, then, by Cauchy's theorem, the integral taken over
the contour C'P'PC+ and the infinite semicircle must vanish. However,
Slnce

I
sin {~(Tl'k- x)} I< exp { - x 1m (k)}

-------------.-.sT.ln....----b....Tl'~--+-~"--------'-------'----~---------

if x:<: Tl', the integral over the infinite semicircle also vanishes. This
shows that

-------_(~2l"-J-·)------il[fc,p.+U = - (2i)-1 Ip7V'P~''-----------

This last integral may be reduced to an integral along the real axis from
P' to P plus all integral along a small semicircle in the negative direction
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around the origin. Because the integrand is an odd function of k, the
integral along the real axis vanishes and, after evaluating the residue at
k = 0, we conclude that

~n-l sin nx - 0r - x)/2, 0 < x < 77.

This resuh may be checked by expanding (TT' - x)j2 in a sine series.
Formula (5.36) is a typical case of a method which shows how an

expansion in a series of eigenfunctions can be represented as a contour
integral over the spectrum of the operator. We shall give the formula for
the general case in Problem 5.14.

Let us now return to the discussion of (5.23). It will be a sine series of
the same form as that in (5.36) if we put

_ 2 -1 sinh {n7T(b y)/a} sinh {n7T'YJla} sin (n7T~/a)

Using (5.36), we get

(5.37) u(x, y)

= (TT'i)-lf sinh {kTT'(b - y)ja} sinh (kTT'r;ja) sin (kTT'~ ja) sin {kTT'(a - x)ja} dk
fo k sinh (kTT'b/a) SIn kTT' '

r; < y.
There is a similar formula for r; > y, but we shall not consider it.

Again, just as before, we have

------------Jo ~ Jo'F' t- Jp-o-+----;;·c-------------­
Since the integrand is an odd function of k and since it does not have any
singularity at k = 0, we may take

-------------J~- J~'p'pa+·
By Cauchy's theorem, this integral equals the integral over the infinite
semicircle plus the sum of the residues at the poles in the upper half-plane.

Using the follo'.ving estimates,

l_s_In---..;. ~~--TT'...;..r;.......;...a < exp {(r;-y) IRe (kTT'ja) I}, 0< r;, y< h

and

\ sin (k7Tlf/a) ~inf!7T(a - x)/a) 1< exp {(~ x) 1m (hr)fa}, 0 <~,x < a,
.. SIn~ .

we conclude that the integrand, and therefore also the integral over un
infinite semicircle, will vanish if r; < y and ~ < x.

The poles of the integrand are the zeroes of sinh (kTT'b.fa), that is, the
points

bk = ai, 2ai, 3ai, . • .•



PARTIAL DIFFERENTIAL EQUATIONS 277

Evaluating the residues at these poles, \ve obtain finally the representation
(5.19) for u(x, Y), nanrely.

u(x, y) = 2b-1
sinh (n7T~/b) sinh {n7T(a - x)/b} sin (n7Tr;/b) sin (n7Ty/b)

Note that so far thIs formula has been proved only If r; < y and ~ < x.
However, because of the symmetry of the result in y and r;, it is clear that
the result holds also for r; > y. To obtain the formula when ~ > x, we
should interchange x and ~ in (5.37).

It should be noted that (5.37) is merely Theorem 5.2 applied to this
special case. Of course, the fact that there are two representations for
u(x, y) was known previously; consequently, the manipulations of this
section were unnecessary. However, we shall see that in more complicated
cases, where the spectral representation for one operator is unknown, the
method presented here leads to useful results.

PROBLEMS
00

5.12. Use the method of this section to evaluate n-1 sin nx for 7T < X < 27T.
1

(Hint. Use the integral

(20-1 r sin {k~x - 7T)}dk.)
--------------kg--/rk--Qcstt"mHk~1Tr-r------'--------------

00

5.13. Evaluate 21c~ :: by a method similar to that of this section.
o

5.14. Suppose that un(x) are the eigenfunctions of a self-adjoint second-order
differential operator L, with unmixed boundary conditions B1(u) = B 2(u) = o.
Let vex, l) be that solution of (L - l)u = 0 which satisfies the condition
B1(v) = 0, and let w(x, A) be that solution of (L - A)tt = 0 which satisfies the
condition B 2(w) = 0; then show that

f c(),)w(x, A)CX(A) d)'
----------:E~t...-·n-.)]UCln(MX"T)~ ~~~~~~~----------

a J[v, w] ,

where C is a contour enclosing the spectrum An of Land CX(A) is a normalizing
factor such that

w(x, A)CX(A) un(x)
---+

____________~J~ A - An

as .1. approaches Jon.

Spectral Representation for the Sum of Two Commutative Operators

The preceding sections have shown us how to find the Inverse for an
operator such as NI -I- N2 which is the sum of two commutative operators.
In this section we shall show how to obtain the spectral representation
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for the sum 1\'1 \ .I.\'2 if the spectral representation is known for each of

Later, we shall discuss such a problem.
Just as before, we assume that Nt is a self-adjoint differential operator

acting on functions of x and that N 2 is a self-adjoint differential operator
acting on functions of y. Let AI, A2' ... be the eigenvalues and Vl(Y) ,
V2(Y) , . . . be the corresponding normalized eigenfunctIOns of N 2. Let
/.&h /'&2, ... be the eigenvalues and Ul(X), U2(X), ••• be the corresponding
normalized eigenfunctions of N l . We shall assume that the set of eigen­
functions of N1 is complete in the linear vector space of real-valued func­
tions f(x), and the set of eigenfunctions of ll2 is complete in the linear
vector space of real-valued functions g(y) which are of integrable square

corresponamg ezgenfunctlOns are t e JunctIOns Uj x vk '!T.ese ezgen-
functions are complete In the linear vector space oj all real-valuedJunctions
h(x, y) such that '

(5.38) foaf: h(x, y)2 dx dy < 00.

The proof of the first two statements of this theorem follows from the
fact that

(N1 + N 2)ujVk = NlujVk + N 2ujVk = !-tjUjVk + AkUjVk'

To prove the completeness, let h(x, y) be any function satisfying (5.38);
then a well-known theorem of analysist--,t..,...e~ll",--s--""'u=s----'"t""-"'h=at"'------ _

foa h(x, y)2 dx < 00

for almost all values of y. Since the eigenfunction of N1 are complete,
it follows that the series

where

converges to h(x, y) in the mean with respect to x for almost all values of y.
Also, by the orthogonality of the eigenfunctions, we have that

(5.39) fo..-
a

L"-\h(.-""LX'Hy~)----,2d"""'x"---=----.2:;L------+-p'-1-\j(tH-yJI-2---------

j

t Fubini's theorem. See Hobson, Theory of Functions of a Real Variable, p. 631.
Cambridge University Press, London, 1926.
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for almost all values of y. Comparing (5.38) vv'ith (5.39), \ve see that, for
all},

Now, since the eigenfunctions of N 2 are complete, we may write

f3iY) = LYjkViy)
k

where

These series converge in the mean with respect to y.
Consider the double series

j k

We shall show that this series converges in the mean to hex, y), that is, we
shall show that if

m n

I"", = f: f:[h(X, y) - ~6 Y;kU;(X)Vk(y)r dx dy

then '-n1l1t converges to zero as m and n approach infinity From the ortho-
gonality of the u j and 'lJ1c' we obtain the relation

dxdy

Using this to evaluate Imn, we see that
m n

I"", = f: fo· [h(x, y)2 - L LY7k] dx dy.
-------------------+-1~11--~~----------

From the fact that the set of eigenfunctions vk(Y) are complete, we conclude
It

that the seriesLYJk converges toJ: f3j(y)2 dy. From the fact that the set
1;- I

m

of eigenfunctions uj(x) are complete, we conclude that the series 2: flj(y)2
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converges to La hex, y)2 dx. These results imply that

m" m m

'I: LY~k--+ Lf: Piy)2 dy = f:LP j(y)2 dy
j=lk=l 1 1---------];]'a___________~~ h(x, y)2 dx dy.

o 0
This proves our theorem.

Theorem 5.3 may be formulated in easily remembered form. Since the
eigenfunctions of both N l and N 2 are complete, we have

~(y - rj) = ~Vk(Y)Vk(rj)·

Multiplying these equations together, we have a result equivalent to that
of Theorem 5.3, namely,

(5.41) ~(x - ~)~(y - rj) = L: L:uix)viy)ui~)Vk(rj)·
j k

The justification for this formal multiplication of the series in (5.40) is
given by the proof of Theorem 5.3 which shows that (5.41) is valid.

Ifcp(Nb N 2) is an analytic function of the operators Nl and N 2 described
above, then, since Uj(x) are eigenfunctions of N l and vk(y) are eigen­
functions of N 2, we have

j k

This result will be used in the next section to find the inverse of a sum of
three commutative operators.

Example-The Iriverse of a Sum of Three Commutative Operators

Consider the following problem:

Find a function u(x, y, z) such that

(5.43) U xx + U yy + U zz + k2u - b(x ~)b(y 'fj)b(z C),
such that

U(O, y, z) = u(a, y, z) = u(x, 0, z) = u(x, b, z) = 0,

and such that u(x, y, z) is outgoing for z = ± 00.

ox
02

and N 2 = - -, with the boundary conditions v(O) = v(b) = 0, then
By2

(5.43) may be written as follows:
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where 'It should be outgoing for z ± 00. Since the operator 1\'1 I
82

commute~ with the operator OZ2' we may treat N l + N 2as a constant. In

that case, the solution of the equation is

u(x, y, z) (2ip) leip1z 'I~(x

where p = (k2 - N l - N2)l/2. Using (5.42)
we get

(5.44) u(x, y, z)

~)~(y 1]),

to interpret this solution,

'" '"( m27T2 n27T2) 1/2 . m7TX . n7TY . m7T~ . n7T'fJ- (2i/ab)z:, Z Ack=-2~~a-2-~-b-2~- SID a SID b SID a SIn b
m n ri { m27T2 n27T2p/2 11_______________. _ex--'p---itf\k2

- Q2 - fj2z - CIj'---'__

Here we have used the fact that (m27T2/a2) are the eigenvalues and (2/a)l/2
sin (m7Txja) the normalized eigenfunctions of N l and also the correspond­
ing result for N 2• Note that the outgoing wave condition requires that
the square root be so chosen that it has a non-negative imaginary part.

ThIS problem ha~ '3ome interesting physical aspects. EquatIOn (5.43)
is the equation for the acoustic pressure field produced by a point source
at (~, 'fJ, C) which is oscillating in a cylinder of rectangular cross section
which extends from - 00 to 00 along the z-axis. The source is
oscillating at a frequency kc/277, where c is the velocity of sound. Equa-
tion (5.43) is also the equation satisfied by one component of the electro­
magnetic field produced by a point source at (~, 'fJ, C) oscillating with a
frequency kcj27T, where c is the velocity of propagation of electro­
magnetic waves. The solution (5.44) shows that in either case the field
produced by the source is a sum of terms. We shall v/rite an individual
term of the solution as follows:

(5.45) Amn exp (iPmnlz - Cj) sin (m7Txja) sin (n7Tyjb),

where A mn is a quantity independent of x, y, z and where

(5.46) fJ':nn + m27T2ja2 + n27T2jb2 _ k2•

Again, we require Pmn to be so chosen that it has a non-negative
imaginary part. For any fixed value of m and n, we shall call the ex­
preSSIOn

Tmn(x, y) sin (m:ifx!a) sin (nTfy/b)

a mode of vibration of the cross-section of the cylinder. Note that it is
an eigenfunction of the operator N l +N 2 corresponding to the eigenvalue
m2Tr2 ja2 + n2Tr2Jb2• We see that if wlltn(z) satisfies the equation

d2wmn R2 0
dz2 + F'mnWmn'
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where fJmn satisfies (5.46), then Tmn(x, y)wmn(z) is a solution of (5.43) with
the right-hand side equal to zero. Of particular interest are the cases
where

wmiz) = exp (± ifJmnz).

Suppose that the exponent has the positive sign, then, if Pmn is real,
Tmix, y)wmn(z) represents a wave traveling in the direction of positive z.
If the exponent has the negative sign and if fJmn is real, then Tmn(x, y)wmiz)
represents a wave traveling in the direction of negative z. The modes for
which Pmn is real will be called propagating modes. If Pmn is not real, the
exponential term in z goes to zero or to infinity as z goes to infinity. The
modes for which fJmn is not real will be called non-propagating or attenuated
modes because in all physical situations the exponential will go to zero.

Let us return to the solutIOn (5.44) and the IndIvIdual modes (5.45).
For propagating modes, that is, fJmn real, the term (5.45) represents a wave
going in the direction of positive z when z > Cand a wave going in the
direction of negative z when z < C. This means that the source at
z = Chas excited waves which travel away from the source. For non-
propagating modes, that is, Pmn complex, the term (5.45) will go to zero
as z goes to ± 00. Combining these results, we conclude that a source
excites all the modes and that the propagating modes go away from the
source to infinity, but the non-propagating modes become exponentially
small as we go away from the source.

Suppose that, instead of (5.43), we consider the equation

Uxx + U yy + U zz + k 2u = f(x, y, z),

where f(x, y, z) = 0 for Izi > Zo and where u(x, y, z) satisfies the same
boundary condItIons as the solutIOn of equation (5.43). The phySIcal
interpretation of this equation is that it is the equation for either the
acoustic pressure field or one component of the electromagnetic field
produced by a distribution of sources whose density is f(x, y, z). It is
easy to show that for IIi > Zo the solution of this problem is a sum

2: AmnTmn(x, y) exp (ifJmnlzl),
m,n

where Tmn(x, y) and ~mn are the quantities defined previously and Amn are
constants depending on f(x, y, z). This type of solution exhibits the
following physically reasonable result: a distribution of sources produces
waves which propagate to infinity along the z-axis and, also waves which
are exponentially attenuated.

This example is typical of a general case. Suppose that we consider
the equatIOn

Nu + Uzz + k 2u = ~(x - ~) ~(y - rJ) ~(z - C),
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where N is a self-adjoint differential operator in x and y acting on functions
f(x, Y), which are of integrable square over some region R in the x, y plane
and satisfy some linear homogeneous conditions on the boundary of R.
We suppose that - 00 < Z < 00 and that u(x, y, z) satisfies outgoing
wave conditions as z goes to ± 00. The modes will be the eigenfunctions
Tmn(X, y) of the operator Put

NTmn = AmnTmn ;

then Inm(x, y)~nn(z) will be a solution of the homogeneou.s equation

Nu + U zz + k 2u = 0
if

d
2
wmn R2 - 0

dz2 + fJmnWmn - ,

where

Again, the modes for which Pmn is real will be called propagating modes;
those for which Pmn is complex will be called non-propagating modes.
We can also show, just as before, that a point source will excite all nrodes
and that the propagating modes will go to infinIty whIle the non-propagat­
ing ones will be exponentially attenuated as we go to infinity. Similar
results can be obtained in a wide class of problems.

PROBLEMS

5.15. What are the modes for the equation

U xx t U'yy + U zz + k 2u = 0,
where ux(O, y, z) = ux(a, y, z) ~- uy(x, 0, z) = uy(x, b, z) = °and where u(x, Y, z)
is an outgoing wave at infinity? Which modes propagate? Which do not
propagate?

5.16. Solve

uxx + U yy + Uzz + k2u = sin (21Tx/a), Izl < Zo

= 0, rzlrc>-z-o-,-----------

with the same boundary conditions as in Problem 5.15.

5.17. Use (5.46) to find the range of values of k for which either no, exactly
one, or exactly two propagating modes exist in the equation (5.43).

The Spectral Representation for Partial Differential Operators

In the preceding chapter we showed that the spectral representation for
an ordinary differential operator L could be obtained by integrating the
Green's function for L A around a large circle in the A-plane. The
poles of the Green's functIOn produce the eigenfunctlons of L, and the
branch-cut integrals in the A-plane produce the continuous spectrum.
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The same procedure can be used to find the spectral representation for a
partial differential operator lv!. The integral of (lv! A) lover a large
circle in the complex A-plane can be reduced to a sum of residues and
integrals over branch cuts. The residue terms will give the eigenfunctions
of M; the branch-cut integrals will give the continuous spectrum.

As an illustration of this procedure, we shall obtain the spectral repre-
sentation of the two-dimensional Laplacian a over the entire x, y plane.
We find the Green's function by solving

(a - A)g = gxx + guu - Ag = - l5(x - x') l5(y - y').

The solution of this equation may be found by considering 8
2

a constant
8x2

in the ordinary differential equation for y. We find that

--------------eg--;;.--J: !fPC'-'V",",::: !II dp;
just as in the preceding chapter, it can be shown that

_______~1~.,( g a),. ~(x x') ~(y y').
27TZ :J'

The contour integral has no poles, only a branch cut extending from
A = - p2 to A = - 00 along the negative A-axis. We evaluate the con­
tour integral by interchanging the A-integral with the p-integral and
putting 1 - - p2 - q2. In this way we gett _

(5.47) l5(x - x') l5(y - y') = ~i g dA
27TZ :J'

--------------(;,;r r~ e
IPC

' ,'J dd"'~ e lq(y y') dq.

This is the desired spectral representation. To see this, let I(x, y) be a
function of integrable square over (- 00, (0). Multiply (5.47) by
l(x', y') and integrate over all values of x' and y' . We get .

I(x, y) = ~2 ff~oo ei(px-qy) dp dq g(p, q),

where
________gn-(p-n-,---1q»)--=-lloo e i(px-Wj(X, y) ax ay.

JJ-oo
These are just thewell-known formulas for the double Fourier transform
of a function of two variables. Note that the improper eigenvalues of
a corresponding to the improper eigenfunctions ei(px-qy) are - p2 - q2;
consequently,

t The term Iy - y'l in the exponent can be replaced by y - y' because the integral
containing it is a <5-function~ which is an even function of its argument.
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11[ = - ~1100

(02 ± n2)ei(PX- QY)g(0 n) dD do----------.L-------,4+-=7T=9-2ff 00 .... "l- .... '''l- .. ':f'

and

----------"cf>'d-J(~<r1)c-#'f--=-------=--~l-----iUOO""( _ p2 - q2)ei{Px qYJ g(p q) dp dq
-----------"1'4rr~2ll-oo 'r ,
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if cp(t) is an analytic function of t which is of less than exponential growth
as t goes to ± 00. The last condition is necessary in order to ensure
that the integral have a meaning, if not as an ordinary function, at least
as a symbolic function.

PROBLEM

5.18. Find the spectral representation of the three-dimensional Laplacian over
the entire (x, y, z) space.

A Physical Interpretation of the Continuous Spectrum

The eigenfunctions eP of a differential operator M are solutions of the
differential equation MeP= AcP and usually have an immediate physical
signIficance in any problem in whIch they appear. However, the im-
proper eigenfunctions 1p, even though they also satisfy a differential equa­
tion, do not have individual physical significance since the functions 1p

do not belong to the vector space over which the operator is defined.
Physically, this means, for example, that the physical state defined by
the function 1p would be a state of infinite energy.

In this section we shall consider a particular example and we shall
investigate the physical significance of the continuous spectrum. The
example we shall consider is this:

Find a function u(x, y) such that

(5.48) U xx + U yy + k 2u = l5(x) l5(y - y')

over the half plane - 00 < x < 00, 0 < y < 00, such that uy(x, 0)
= - iXU(X, 0), and such that u(x, y) IS outgoing for x = ± 00. The func-
tion u(x, y) could be interpreted physically as the acoustic pressure field
produced by a source located at (0, y'). The source acts in the half
plane y > 0 bounded by a semi-rigid diaphragm at y = O. Note that
ex 0 would correspond to a rigid diaphragm.

Put N 2u - U yy ; then we may write (5.48) as follows:

U xx + (k2 - N 2)u = l5(x)l5(y - y').

The solution of this equation is
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From (4.48) we obtain the following spectral representation for .l.\'2:

tJ(y - y')

(+ ') 200( oc.= 2oce-ay y +- cospy - - smpy

Putting this into (5.49), we get

i El fl oc.) ei 'vI k2 p
2rXI p2 dp

----~;-Jo'" ~cospy ; sin P17-r:os PY' p sm pY'Vk2 _ p2 p2 + ",z'

The first term on the right-hand side is a plane wave which travels along
the x-axis and is exponentially damped in the direction of the y-axis.
Such a wave is called a surface wave. Similar results hold in more general
cases. Each eigenfunction produces a surface wave which is exponen­
tially damped in the direction transverse to the direction in which the. .
wave IS movIng.

To interpret the integral term in (5.50), we notice first that the integrand
is an even function of p and consequently we can write the given integral
as one-half the integral from - 00 to 00. Next, replace the trigono­
metric functions by exponentials. We have

OC • 1 . ( ioc1
cos py - psm py - :2 e

tpy 1 + p j
and then

____(cos py - i sin py)(cos py' - ~ sin PY')~p"';2~+±2c-->cx"'-;2~ _

= eip(y-y') + e-ip(y-y') + eip(y+y') p + ~oc + e-ip(y+y') p - ~oc.
p - lOC . P + lit.

When thIS result is substituted into the integral in (5.50), it becomes

--;:::===- dp.
Vk2 p2

_ !:-fOO [eiP(y-y,) + e-ip(y-y')+ e-ip(y+y') p + ~OC + e-ip(y+y') p - ~oc]
27T -00 P - lOC P + lOC

ei vk'-p'lxl

If we replace p by - p in the second and fourth terms, _we see that these
terms are the same as the first and third, respectively; consequently, this
integral can be expressed as the sum of II and 1'2.' where

______--cEI-'t-l-=~~iroo eip(y-y'HivkC]jilx! dp
7T J-oo Vk2 _ p2
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and

The integral!l can be evaluated in terms of Bessel functIons. We sha,ll
not do this, but instead we shall obtain the asymptotic behavior of I h

that is, its behavior as the distance between the observation point (x, y)
and the source point (0, y') goes to infinity. The method we shall use to
obtain this asymptotic behavior is applicable in many other cases. The
essence of the method is the introduction of the exponent as a new
vanable of integration and then the study of the new Integrand In the
neighborhood of its singularities. Let us see how this works for 11, We
put

(5.51) p(y y') + Vk2 p21xj - 0';

then differentiation gives

(5.52) [Vk2 - p2(y - y') - pjxll dp = dO'.
vk2 - p2

But

[p(y - y') + vk2 - p2/xl]2 + [Vk2 - p2(y - y') - plxll2 = k 2r 2,

where
r2 = (y - y')2 + x2;

consequently, (5. 52) becOInes

dp dO'
vk2 - p2 vk2r2 - 0'2'

When this result is substituted in I h we have

I i l" dO'- e~a~===-
1 - - -:; 0 Vk2r2 _ 0'2'

where C is the contour indicated in Fig. 5.2. This curve C is obtained by

\
\

/
(

-k(y -y')

Fia. '.2

k(y - y') '-..-/
kr
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letting p go from 00 to I 00 in (5.51). Since the square root of
k 2 p2 must have a non-negative iInaginary part for the solution to be
outgoing, we see that as p approaches ± 00,

o\/k2 p2 _ I + i~r.-.----------

This shows that, for large [EJ,-,-, _

a ~ p(y - y') + ilpxl.

When - k < p < k, a is real. Considering the derivative of a with
respect to p as given in (5.52), we see that for p > - k, a increases as p
increases to the value Po, where

vk2 - P5 (y - y') = Polxl·
\'Vhen P Po, (J kr. For P > Po, the value of (J decreases until P k
and a - k(y - y'). This explains the bending back of the curve C.
Note that there is a branch point in the a-plane at a = kr; consequently,
we must distinguish between the values of the integrand on the part of C
above kr from the values of the integrand on the part of C below kr.

The next step in the treatment of II is to shift the contour C so that the
exponential will go to zero as rapidly as possible. This is done by
straightening the bend in the curve and then moving the left-hand and
right-hand parts of C until they are parallel to the imaginary axis. In
this way we obtain the contour C' of Fig. 5.3. Shifting the contour

I C'
I

I

\ /
};,:

Fig. 5.3

C to C' can be justified by the facts that the contours can be connected by
an arc of large radius and that the value of the integral on the arc can be
shown to approach zero as the radius increases.

It should be noted that the left hand and right-hand parts of C' can be
brought as close together as desired as long as they are' not made to
coincide. The presence of the branch point of the integrand at a = kr
indicates that the value of the integrand on the right-hand part of C differs
from the value of the integrand at the :peighboring point on the left-hand
part of C by the factor minus one.
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The final step in the method is to put

(/ = kr + iT:

in the integral for II. We get

Here the L and the R under the integrals indicate that the integrands
should be evaluated on the left-hand and right-hand sides of C', respec-
tively. Consider first the right hand side of C'. The points on it carre
spond to values ofp > k. PI om (5.52) and the equation beneath it, we
see that

Vk2 - p2(y - y') - P~I-_V-,----,-"k----,-2r_2_~(J----,2. _

For p > k, the imaginary part of the left-hand side is non-negative (thIs
assumes y > y'); consequently, we must take that square root of k2r2 - (/2

which has a non-negative imaginary part. This implies that

(k2r2 - (/2)1/2 = (_ i7:)1/2(2kr + iT:)1/2 = e37Ti/4r1/2(2kr + i7:)1/2

on the right hand part of C'. On the left hand part of C', the value of the
square root will be just the negative of the above value. Using these
results, we see that

2 f
-1/2e-T d

----------+-~-~-n'lei~(k-r+~1TrI+l4'*-1-) 00 T: T: •11 -
11 0 (2kr + h)l/2

For large values of kr this integral approaches the integral
2 -1/2 -T d 2 1/2

_ _ i(kr+1T/4) 00 T: e T: = _ _ i(kr+1T/4)

7T 0 (2kr) 7Tkr

The error in using this value for II is given by the difference

2. ~oo ~ 1 1 ~E = - e~(kr+1T/4) r-1/ 2e-T dT: - ---
7TO(2kr + IT:)1/2 (2kr)1/2 ~.-----

We shall show in Problem 5.19 that

(
2 )1/2

le-i (kr+1T14) EI <7Tkr (8kr)-1.

This proves that, as kr approaches mfinlty, 11 converges to the value given
in (5.53).

In a similar manner the integral 12 can be evaluated for large values of
la. We shall show in Problem 5.20 that

----I-(S~.~SA-4)\------------'lI-1i-=~~-----jL~)1/2ewe,'+11/4) ,

\'1Tkr
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where
,.'2 (y + y')2 + X2,

if the ratio roc/k is small.
Going back to u(x, Y), we see that

'U(X, y)
eiVkZ+oc2IXle-a(y+y')

irJ..

The last two terms have an immediate physical interpretation. The first
of them is the field produced by a cylindrical source located at (0, y');
the second term is the field produced by a cylindrical source located at
the image point (0, y'). These terms came from the continuous part of
the spectrum. We conclude then that the discrete part oj the spectrum
produces surface waves while the continuous part of the spectrum produces
cylindrical waves or space waves, depending on the number of dimensions.

PROBLEMS

5.19. Prove the estimate for E given above. (Hint. The difference
(2kr + iT)-1/2 - (2kr)-1/2 = - ;r(2kr)-1/2(2kr + i1:)-1/2[(2kr)l/2 + (2kr + iT)l/2]-I.

This last expression is less in absolute value than T(2kr)-s/2/2.)

5.20. Find the asymptotic behavior of 12, (Hint. Put a p(y + y')

+ vk 2
- p 2 Ixl·)

5.21. Show that the integral 11 = g(x, Y), where g(x, y) is the solution of
gxx + gyy + k 2g = t5(x)t5(y - y') over the whole x, y plane. (Hint. Solve for

S-Functions in Different Coordinate Systems

We have shown previously that the three-dimensional 3-function is
equal to the product of three one-dimensional ~-functions. A similar
result is valid for n-dimensional ~-functions. Let ~(Xh X2, .. " xn ) be the
n-dimensional ~-function, that is, suppose that

----J...Jef>(x}, . . " x,J £5(x}, .. " xn) dx! ... dXn = c/>(O, 0, . . " 0).

Then, since

we conclude that

(5.55)
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The expressions for the ~ function become more complicated when Vle
introduce curvilinear coordinates. Before, we obtained an expression in
spherical polar coordinates for the ~-function at the origin in three­
dimensional space. We wish to generalize this result. For simplicity, we
shall discuss the special case of two-dimensional space. Suppose that
we change from Cartesian coordinates XI, X2 to curvilinear coordinates
~h ~2 by the formulas

Here we assume that u and v are continuously differentiable single-valued
functions of their arguments. Suppose that the coordinates ~l = fh,
~2 = fJ2 correspond to Xl = (lh X2 = (l2' By a change of coordinate'),
the equation

becomes

where J, the Jacobian of the transformation, is given by the formula

J _ OU OV OU OV
- O~l O~2 - a~2 O~l'

EquatIon (5.56) shows that the symbolic function

~[U(~h ~2) - (l1]~[V(~h ~2) - (l2] IJI
assigns to any testing function the value of that testing function at the
point where UI = (lh V2 = (l2, that is, at the point where ~l = fh, ~2 = fJ2;
consequently, we may write

~[U(~l: ~2) - (l1]~[V(~h ~2) - (ly,] IJI = ~(~l - fh)~(~2 - fJ2)
or, if 11:1 =1= 0, we have

As an illustration of this theorem, consider the transformation from
rectangular coordinates x, y to polar coordinates r, 6, where x r cos 6,
Y - r sin O. Since J - r, we have

(5.58) .Sl( ).Sl( ) _ ~(r - ro)~(O - ( 0)
u X - Xo u Y - Yo - --.;...---.;.----.,;

r

if Xo = '0 sin (}o, Yo = '0 cos 00•

What happens to (5.57) if J = 0 at ~1 = OJ, E2 = 02? Then the trans-
formation from Xh Xl! to El. Ell. breaJ<s down and is no longer one-to-one.
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For example, in the transformation from rectangular coordinates to polar
coordinates, the Jacobian becomes zero at the origin x - y - 0, and we
know that there the transformation is no longer one-to-one since there
r = 0 but () may have any value. This situation is typical of the general
case. We shall call a coordinate such as 0, which is either many-valued
or else has no determinate value at a singular point of the transformation,
an ignorable coordinate at that point.

Suppose that Xl = (Xh X2 = (X2 is a singular point of the transformation,
that ~2 is an ignorable coordinate there, and that the testing function
ck(X], X2) in x], X2 space becomes the testing function ck(~h ~2) in ~h ~2

space. When the point Xl = (Xh X2 = (X2 is a singular point, we
have ~l = fh, ~2 indeterminate, and then the testing function 4>(~h ~2)

depends only on th. Vv7e denote its value by ¢({JI)' (The case of the origin
in polar coordinates illustrates thIS. The function <!>(r, 0) reduces at the
origin to a function of r alone.) The symbolic function corresponding to
b(XI - (Xl) b(X2 - (X2) will consequently be a symbolic function only of ~l'

Formula (5.56) may be written as follows:

(5.59) c/>«(Xb CX2) = Jf c5(u - cxl)c5(v - rl.2)c/>(u, v) 1.Llf-"'d~~:I:-'d4<':>~~2-----

= fft(~l)4>(~h ~2) IJI d~l d~2 = 4>(Pl),

where t(~l) is some symbolic function of ~1' Put

J l = fTJl d~2;

then (5.59) will be satisfied if we put

t(~l) = c5(~l - PI)III ;

consequently, in case j - 0 for Xl - (Xh X2 - (X2, we have

b(Xl - (l1)b(X2 - (X2) = b(~l - Pl)/Ilil.

For example, in the transformation from rectangular to polar coordinates,

() is an ignorable coordinate at the origin and J027T r dO = 2Trr; consequently,

b(x)b(y) = (27Tr)-lb(r).

Similar results hold for transformations in n-dimensional space. We
state theln in

Theorem 5.4. Let Xh • • " xn be n-dimensional rectangular coordinates
and let ~'h .. " ~n be any other coordinate system not necessarily or.thogonal,
with n-dimensional volume element IJI d~l ... d~n' Suppose that the point
P with coordinates Xl - (Xh ... ,xn - (Xn has coordinates ~1 - Ph
~n = f3n and that J ::p 0 at P; then



PARTIAL DIFFERENTIAL EQUATIONS 293

IfJ 0 at P, suppose that the equations ~I Ph"" ~ f1k define P and
that therefore the coordinates ~k+h •• " ~n are ignorable. Put

that is, Jk is the integral of the Jacobian over the ignorable coordinates;
then

~(XI - (Xl) ... ~(xn - (Xn) = IJkl-I~(~1 - (JI) ... ~(~k - (Jk)'

The proof of this theorem is similar to the proofin two dimensions. We
shall illustrate it by considering the transformation from three-dimensional
rectangular coordinates x, y, z to spherical coordinates" 6, tp. Here

x = r sin 6 cos 1p, y = r sin 6 sin 1p, z = r cos 6.

The Jacobian is J ,.2 sin (j. It vanishes for all points on the z-axis where
1p is an ignorable coordinate and also at the origin where both () and 1p

are Ignorable coordInates. Let the pOInt (x', y', z') In rectangular co­
ordinates have spherical coordinates (r', 6', 1p'); then, if r' =1= 0, 6' =1= 0, we
have

ZTl'r2 SIn () .

If x' = y' = 0; then 6' = 0, the angle 1p is ignorable, and we have

d(x)d(y)~(z z') ~(r - r')~(6)

If x' = y' = z' = 0; then r' = 0, the angles 6 and 1p are ignorable, and we
have

~(x)~(y)~(z) = (4rrr2)-I~(r).

PROBLEMS
5.22. Verify the above relations between ~-functions in rectangular and spheri­

cal coordinates by operating on both sides with testing functions.
5.23. Solve the problem gzx + gyy - c$(x - x')c$(y y') by introducing polar

coordinates. (Hint. Use (5.58) to transform the c$-functions, and then con-
82

sider 80 2 as a constant.)

5.24. Show that the solution of Problem 5.23 is just the expansion in a Fourier
series of (4Tl') 1 log (r 2 + r'2 - 2rr' cos 1p), where r2 _ x 2 + y2, r'2 _ xP2 + yP2,
and where 1p is the angle between the line joining the origin to x, y and the line
joining the origin to x',y'. (Hint. 1p -": () - ()', where x - r cos (),
x' = r' cos 0'.)

Initial-Yalue Problems
The partial differential equations we have considered up to now were

all of the elliptic type, and therefore the appropriate conditions on the
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solutions v/ere boundary conditions. In this section and the next, we
shall consider parabolic and hyperbolic type partial differential equations,
and therefore the solutions will be required to satisfy certain initial con­
ditions with respect to the time besides, possibly, boundary conditions.
The methods we shall use to solve these equations will be the same as
those we have used so far inasmuch as we shall assume one part of the
operator constant and solve the remaining part as an ordinary differential
equation. Again, by treating different parts of the operator as constant,
we shall optain dlflerent representatIOns for the solution, and we shall
find that each representation is useful in a certain region.

There will be, however, two main differences. First, we shall be using

the operator ~ or a
2

, with the conditions u(O) = 0 or u(O) = u'(O) = 0,

respectively. The spectral representation for this operator will be
obtained from the following formula, which was given also at the end of
Chapter 4:

(5.60) 1 !a+iOO(jet - t') = -. ~.------lie=P-,--(t-_t---=-')--'Adf.l.'rpT-' _
27Tl a-'l,OO

where a> O. This formula contains implicitly the Laplace transform
theorem. For, let f(t) be a function of integrable square over (0, (0);
then, multiplying (5.60) bYf(t') dt' and integrating over (0, (0), we get

where

g(p) - It f(t')e pt' lit'.

We call g(p) the Laplace transform of f(t) and f(t) the inverse Laplace

transform of g(P). Note that, if f(t) is in the domain of the operator ~,at
that is, if/(0) = 0 and if f'(t) is of integrable square over (0, (0), then

81

, 1 ia+ioof (t) = 2~ . pePtg(p) dp.
7Tl a-'l,oo

This shows that (5.60) and (5.61) give the spectral representation for a.

(5.61)

Consider the extended definition of :t' We shall denot~ the ordinary

derivative of a differentiable function l(t) by ['(t). Then, to find the

extended derivative :{. we have, since the adjoint operator is :t' acting
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on functions ~vVhich vanish in a neighborhood of 00, that

50"" itg(t) dt = r j - :;) dt = j(O)g(O) + 50"" gf'dt,

where g(t) is any function in the domain of the adjoint operator

This shows that

of = f(O)lJ(t) + f'(t).at
Consequently, (5.61) may be generalized as follows:

ot

a

and g(p) _ p 1.

The second difference from the previous theory is that the Green's func­
tion for the wave equation in more than one space variable will be a
symbolic function instead of an ordinary function. This is in contrast to
all our previous examples in which the Green's functions were ordinary
functions. We shall discuss this fact in greater detail when we come to it.

Consider the following problem of the parabolic type:
Find u(x, t) such that

such that u satisfies the initial condition

(5.63) u(x, 0) = lJ(x - x'),

and such that u(x, t) IS bounded for all t as x approaches ± 00.

We solve this first by putting N1u = Uxx and treating N1 as a constant.
The solution of the equation

u t = N1u,

with the condition u(O) - <5(x x'), is

u = eN1tlJ(x - x'),

or, using the spectral representation of Nh we get

u - -.!.. foo e kIt eik(x x') dk.
-----------~2'7T"fF_o--=oo'"'-'------------------

This integral may be evaluated by completIng the square in the exponential.
We have

= (4'1Tt)-1/2 exp [- (4t)-.l.(x - x')2].
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This last result can be used to solve the follo'Ning initial value problem
for the heat equation.

Find w(x, t) such that

Wxx - wt, - 00 < x < 00, 0 < t < 00,

such that

(5.64) w(x,O) = I(x),

and such that w(x, t) is bounded as x approaches ± 00.

We notice that, if we multiply (5.63) by I(x') and integrate from - 00

to a;l, it becomes (5.64); therefore we get

w(x, t) = J~oo u(x, t)/(x') dx'

ot

f
f ')2]fOO ,x x dx'

------------\(-"'I'4'H-7Tt-Jt)'-'-I=-/~21-00lex') exp 4t -~---"-',~-----
--------

the desired solution.
For the sake of illustration, we shall solve (5.62) in another way by

putting P - 0 and treating P as a constant. Since 1/, is not zero for t - 0,

the extended definition of~ shows that (5.62) becomesof
(5.65) Pu = uxx + c5(x - x')c5(t).

The solution of this is

or, using the spectral representation of P, it becomes

_ 1 la+ioo pt -Vplx-x'i dpu - - e e --_.
27Ti a-ioo 2Vp

Putting p - - k 2 and shifting the path of integration will reduce this
integral to the previous form.

Finally, we may solve (5.62) by treating both NI and P as constants.
This technique will be useful in a later problem. From (5.65) we have

(P N1)u - b(x x')b(t) ;
therefore,

1
u = c5(x - x')c5(t)

P-NI

and, using the spectral representations of both P and .LVh we get

(5.66) u 1 foo 1 fa+ioo 1 epteik(x-x') dk dp.
271' -00 27Ti a-ioo p + k2
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If'vve carry out the integration with respect to eitherp or k, we would have
a previously obtained result. Instead of doing this, we write

and substitute it in (5.66). The reason for this substitution is that the
resultIng integral can be evaluated easIly wIth respect to p, t', and k. We
shall see that a similar substitution will enable us to solve the n-dimensional
heat equation (see Problem 5.27).

We wish to evaluate the integral for '1.«, namely,

If we put p = iq, we find that the p-integraI is

if 00 eiq(t r) dq - 2'TTlo(t - t').
-00 •

Evaluating the t'-integral next, we get

1 f00_______u--'-(x----,-o,-1)-------'2'+..71'__ 00 exp [ik(x - x') - k 2t],---d_7c , _

and just as before we find

u(x, t) = (4771)-1/2 exp [- (4t)-1(x - X')2].

PROBLEMS

8
5.25. IfP = 8t' use the extended definition of the operator to show that

P2j' - /"(t) + f(O)~'(t) +f'(O)~(t).

5.26. Solve gxx gt - l5(x x ')l5(t I') ifg(x, 0) -- 0 and g(x, t) is bounded
as x approaches ± 00.

5.27. Show that the function u(xh •• " Xn , t) which satisfies

l:1u = Ut, - 00 < Xl' • • •, Xn < 00, 0 < t < co
d h ... t d' .an t e nntIa con ItIOn

U(Xh •• " Xn, 0) = c5(x1 - X~) ••• c5(xn - x~)

and which is such that u(x], .. " a.!n, t) is bounded for all t as any Xj (j = 1, .. " n)
approaches ± 00 is

U - (%1) fH2 exp [ (41) 11r "1 2].

Here, Il is the n-dimensional Laplacian and r, r' are n-dimensional vectors with
components X h •• " Xn and x;, .. " x~, respectively. (Hint. Consider both Il
and P as constants. Use the fact that the spectral representation of Il is given
by the n-dimensional Fourier transform. Replace (Il + P)-l by an integral as
was done in the text with (5.67). Carry out the P and 1: integrals, and the
remaining huegrals reduce to a product of integrals of the same type.)
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The Green's Function for the Wave Equation

We shall apply the methods of the preceding section to find the Green's
function for the wave equation in one space dimension, that is, to find the
solution of the equation

(5.68) gxx - g t t = - 3(x - x t )3(t - t)

such that
g(x, 0) = gt(x, 0) = 0

and such that g(x, 1) is bounded as x approaches ± 00. Put P

then (5.68) becomes

gC6C6 - p2g = - l5(x - x')l5(t - t').

The solution of this equation is
e-P1x-x'l

g = 2P ~(t - t')

or

o.
ot'

1 fioo I 11 dp-----l(1-.15"'-'.6'r9)J----~g-=-=----2 -. . exp [pet t') p X x' t1f--""'2~n------
TTl -'/,00 'J:"

if the spectral representation of P is used. Note that the contour of inte­
gration should be indented around the origin on the right side since the
Inverse Laplace transform should have the patli of integration from
a - ioo to a + ioo, where a > O.

The integral (5.69) may be evaluated by closing the contour with an
infinite semicircle in the right or left half plane according as the coefficient
of p in the exponent is negative or positive. ¥le find that

(5.70) g = 1H[(t - t') - Ix - x'i],
where H(x) is the Heaviside unit function, equal to one if x > 0, equal to
zero otherwise.

ThIs expression (5.70) is called the Riemann Junction for the wave
equation. The formula shows that g = 0 unless the point (x, t) is'inside
the "characteristic cone" defined by the inequality

t - t' > Ix - x'i.
The 'angle of the "cone" depends upon the wave velocity; that IS, if
equation (5.68) were

gxx - c-2g t t = - l5(x - x') l5(t - t'),

where c is the wave velocity, then the characteristic cone would be given
by the inequality

c(t - t') > Ix - x'i.
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l,Ve shall now consider the wave equation in three space dimensions.
We wish to find a function g(XI, X2, Xg, t) satisfying the equation

satisfying the initial conditions

and such that g(Xh X2, Xg, t) is bounded for all t as either XI, X2, or Xg

approaches ± 00.

ot
g = - (d - P2)-l c5(Xl - xi) c5(X2 - x~) c5(xg - x~) c5(t - t').

Since the spectral representation of A is given by the three-dimensional
Fourier transform, we see that

(5.72)

g = (2.".)-S(2.".j}-1Ifr~ dle1 dk2 diesr: dp exp CpU -;j .;:.. (x - x·)l.

Here, k, x, and x' are vectors with components (kh k2, kg), (Xh X2, Xg),
and (x~, x~, x~), respectively; also

k2 = k~ + k~ +k~.

The p-integral may be evaluated by closing the contour in the right or
left half-plane according as the difference t - t ' is negative or positive.
Since the p-integration is to the right of the imaginary axis, we find that
for t < t ' (5.72) is zero, but for t > t ' it becomes

(5.73) g = (27T)-gJIJ:oo dkl dk2dkg(2ik)-l [exp {ik(t - t') - ik· (x - x')}

- exp { - ik(t - t') - ik· (x - x'))].

To finish the evaluation, we introduce spherical coordinates in the
k-integrals. We take the polar axis along the direction of the vector
x - x'; then

k . (x - x') = k Ix - x'I cos 0

where (J IS the polar angle. The volume element ilkl ilk2 ilkg becomes
k 2 dk sin 0 dO drp, where tp is the meridional angle. Equation (5.73)
becomes

(5.74)

- exp { - !k(t - I') - iklx - x'I cos O}]H(t - t').
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The () and tp integrations can be performed immediately, and the above
expression reduces to the following:

1 ~(t

477"

a formula given by Dirac.

(5.75) g = (277")-2(lx - X'I)-l fo
oo

dk [cos k{(t - t') -Ix - x'l}
- cos k{(t - t') + Ix - x'I------}lO=;;RO=-(t--------=t')--

t' Ix x'l) ~(t t' + Ix x'l) U( _ ')

1
'1 II' t t,x-x

It should ,be noted that the Green's function given by (5.75) is really a
symbolic function representating a distribution. In the other examples of
Green's functions, it was always a piecewise analytic function. The
difference between this example and the others is that now we are dealing
with a hyperbolic differential equation. It can be shown that the Green's
function for an elliptic equation is analytic whereas the Green's function
for a hyperbolic equation is, in general, a symbolic function representing
a distribution.t

PROBLEMS

o< t < 00; u(x,O) = a(x), Ut(x, 0) = b(x). (Hmt. Treat P = at as a constant

and use Problem 5.25.)
5.30. Solve li.u = Utt, - <X) < X h x 2, X a < 00, 0 < t < 00, and u(xh x 2, x a, 0)

= a(xh X 2, x a), Ut(xh x 2, x a, 0) = b(xh x 2, x 3). (Hint. Treat Ii. as a constant.)
•

t See L. Schwartz, Theone des distributions, Vol. 2, Actualities scientifiques et in·
dustrie/es, 1091 and 1122, Hermann & Cie, Paris, 1950, 1951.
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formula for, with unmixed boundary

conditions, 167

Impedance, characteristic, of medium,
181

discontinuity conditions and, 176
of a solution, 176
of wave motion, 181

oun ary con lhons are unmlxe ,
mproper elgen unctIOn,

238
definition of, 234
integral equation for, 239-240
norma lza Ion 0 ,

o ap aClan,
perturbation of plane waves to get,

246-247
physical significance of, 285

techniques for finding, illustrated, 160­
164

Incoming wave, 178
Independent vectors, 10-13

with outgoil1j,C WUvtH~()mlilioll, 238, 240. Initial value problems, 293f.



308 INDEX

existence and uniqueness of solution
of, 49

when operator is identity plus dyad,
29-32

equation, 187, 191
Integral operators, adjoint of, 44

Jordan canonical form, characteristic
equation and, 92

f
42

d en rate kernel of 27
examples of, 23
Green's function as kernel of, 134, 156
inversion of 31
kernel of 23 Kato 212
Neumanrt series and 36 Kello 254
uniqueness and existence of inverse of,

49-50
Integrals, defining symbolic functions,

219
evaluation of, 105f.
Lebesgue, 4, 10, 146
Riemann, 10

Intersection of subspaces, 15
Invariant manifolds, 57f.

of commuting operators, 63
Invariant subspaces, 57f.

matrix representation in, 59
Inverse Laplace transform, 294
Inverse operator, 28f.

Kernel, definition of, 23
degenerate, 27
Green's function as, 134, 156
of adjoint integral operator, 44
of inverse operator, 145

Kronecker delta, 17

Langer, 207
Laplace transform theorem, 294
Laplacian, definition of, 253

improper eigenfunctions for, 284
improper eigenvalues of, 284

Lebesgue integrals, 4, 10, 146
Legendre polynomials, 18

e nitlOn 0 , 34
or 1 entity pus ya ,

for invertible operator plus a dyad, 38
in terms of eigenfunctions, 113
kernel of, 145

engt 0 vector define ,as a functiona ,

in Es, 5
in En, 5
in £2, 6

e ne n g ~

defining symbolic functionsJ 154-155
definition of, 19

erator, 39
of identity plus small operator, 34f.

eumann senes or,
spectral representation and, 125
to differential operator, 144, 156
to sum of commuting operators, 263,

of operators, 28f. closed, 13
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dual, 148
invariant, see Invariant manifolds

Linear spaces, annihilation of, 69
complete, 8-10, 146

22

10-12

integrable func-

146

function, 1, 4
of complex-valued functions, 45

MacDuffee, 10
Manifolds, see Linear manifolds
Matrix, adjoint of, 43

mmutin see Commutin 0 erators

pOln spec rum 0 , see

lze nu space

rea,
representation of, see Representation

of operators
residual spectrum. of, 126

"creation" 34 45 47 90 126
ous s ectrum

aVIng c ose range,
invariant manifold for, 58
inverse, see Inverse operator
normal, 49

completely continuous, see Completely
continuous operators

continuous s ectrum of see Continu-

definition of, 24
extended, 155
also see 0 perators

"destruction," 34, 70, 90, 126
diagonal form of, 32
diagonalization of, 57
differential, see Differential operators
dyad as, 27
eigenvalue of, see Eigenvalue

Fredholm alternative property of, 47­
49

functions of, 113
generalized null space of, see General-

eigenvector of, see Eigenvector

Linear operators, 22f.
adjoint of, see Adjoint operator

1

simple, 112, 117,200
spectral representation of, see Spectral.

sum and product of, 27

diagonal, 96, 99, 100, 109
dyad notation for, 26-28

H~rmitian, 100, 101
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canonical form
orthogonal, see Orthogonal matrix

system of differential equations, for
solving, 124

Green'sconditions
172f·

105

metrical, for, 185
variational, in approximating elgen­

alues 207

Morse, 180

Mixed boundar
function for,

Mode, 281-282
Moeller, 241

Minimax rinci Ie59

product, 26
real, 109

tation of 0

re resentation of 0 erator in eneral-
ized null space by, 73

right and left eigenvectors of, 85
scatterin 186
self-ad 'oint, see Self-ad'oint matrix
similar, see Similar rnatrices
trace of, 28, 93
transpose, see Transpose matrix
unitary, see Unitary transformation

Maxwell's equations, 180
Maximum property of eigenvalues, 104

Multiple eigenfunction, 225
Multiple poles of Green's function, 224­

225
Multiplicity, of continuous spectrum, 236

of eigenvalue, 61, 92
Murnaghan, 63

Methods, adjoint of differential operator,
for finding, 149

adjoint operator, for finding, 43
analytic function of a matrix, for cal-

Neumann series, 36-37
Non-homogeneous boundary conditions,

153, 156, 167f., 169f.
cu atmg, 12

asymptotic e aVlor 0 an Integra, or
obtaining, 287-289

asymptotic behavior of solution of dif­
ferential equation, for obtaining,

Non- omogeneous I erentIa equatIOns,
so utIOn 0 ,

if homogeneous equation has non­
trivial solution, 170

with non-homogeneous boundary con-

spectrum,

od for, 227J.
eigenvalues, for obtaining lower

bounds for, 211

of improper eigenfunctions, 237, 241,
251

of vectors, 17

ing, 247
iteration (perturbation), 36

dimension of, 58
and multiplicity of eigenvalue, 61

perturbation (i tera tion) , 36 ized, 70
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continuous, 24
definition of, 24 Parabolic equation, 294f.

linear, see Linear operators
range of, see Range of operators

1 3

ei envalues for 91 131.

equation, Hyperbolic equation,
Parabolic equation, Potential

1

P rtial differential r
Green's function for 255 .

plus a dyad, 53f.
Orthogonal complement, 22, 48
Ortho onal condition for non-homo ene-

spectral representation for, 283f.
Periodic boundary condition, 151
Periodic function 66

ous e uation to have a solution Periodic vibration 179
46, 172 Periodic waves, 180

Orthogonal eigenfunctions, for differen­
tial operators, 199

for second-order differential operators,
202

for self-adjoint operators, 201
Orthogonal eigenvectors, for adjoint op­

era tors, 199
for Hermitian matrix, 100
for operators with closed range, 133

Perpendicular vectors, see Orthogonal
vectors

Perturbation method, 36
Perturbation of the continuous spectrum,

238f.
Perturbation of the discrete spectrum,

227f.
Plane wave, 246-247
Point charge, 259

for quadratic forms, 108 Point spectrum, branch cut of Green's
for self-adjoint operators, 96

Orthogonal matrix, 97f.
definition of, 99
determinant of, 99

function and, 214
definition of, 125
normalization of, 237
perturbation of, 227f.
sur ace waves an ,

as non-nega lve elgenva ues,

olsson s equabon,
Poles, multiple, 225

of Green's function, 224
Positive-definite operator, 151, 254

osi ive- e ni e qua ra ic orm,
Positive-definite real self-adjoint matrix,

10~

Positive-definite self-adjoint matrix, 107

quadratic forms and, 101-102
rota tion and, 99
scalar product and, 99

Orthogonal transformation, see Orthogo-
nal matrix

inverse of, 101

Orthogonal vectors, construction of, 16
definition of, in Euclidean space, 5

in £2, 7
form subs aces 14

of operators, 27
scalar, see Scalar product

ro .ection theorem and 18

16, 94, 97
Orthonormal basis. 16-17,98

Ortho onalization S hmi

(;recn'M fUlletinn, 218, 231 Projection theorem, 18f., 51f.,
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of electric waves, 179
of modes, 282

Representation, alternative, 267
changing to another, 273

Quadratic form, 101I.
as sum or difference of squares, 102

integral, of Bessel functions, 287
of Green's functions, 268

f mat ix s d 28
Hermitian, 103
orthogonal eigenvectors of, 108

osi tive-definite 104

of operators, see Representation of op­
erators

of a vector in terms of an arbitrar
real ei envalues and ei envectors of

109
reduction of, 103
simultaneous reduction of two, 107
transformation of, 102

Quantum mechanics, Dirac scalar prod-
uct notation used in, 26

Green's function and, 134
scalar product used in, 7, 99
Schrodinger's equation in, 180
wave propagation and, 177

basis 21
s ectral see S ectral re resenta tion
uniqueness of, 11

Representation of operators, 25I.
by dyads, 27
by matrices, 23, 25f.
in diagonal form, 32, 57f.
in finite-dimensional space, 59
in generalized null space, 7Of.
relative to a basis, 83

Residual spectrum, definition of, 126

Range of operators, as invariant mani­
fold, 58

definition of, 24
fini te-dimensional, 25

of differential operator, 200
Resolvent set of operator, 126

approximate spectrum and, 127
Riemann integrable function, 298
Riemann integrals, 10, 146
Ru es, or IscontlnUlty con ltlons 0 a

I erentla operator,
for Green's function in limit-point case,

231
for inversion of identity plus a dyad, 31

progemtors or,
Rank, of eigenfunctions, 227

of eigenvectors, 68, 100, 227
Rayleigh-Ritz method, 208

genera lze , 6-

r
Real vector, 94
Reciprocal basis, 22

ermltlan rnatrIX, or norma lzatlon 0 Improper elgen-
unc Ions,

for sum of two commuting operators,
265

for wave transmission, 185

simultaneous, 107f. complex-type, 7, 99, 101, 150
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definition of, in £2, 7

in £2, 6

INDEX

eigenvectors of, 95
Hermitian, 100, 101

313

in complex space, 6
in Euclidean space, 4f., 5, 16

h I

of continuous

process, 16,

conditions,

eigenvalues of, 201
formally, 148, 150

spect.l·um of, 234,

transformed to diagonal matrix, 96­
97

uation

100

In equation

12

230,

for partial differential operators, 283f.
for sum of two commutative operators,

with improper eigenfunctions, 244



U itar transform i

of integral equation, 50
Unitary matrix, see Unitary transforma­

1

Transverse magnetic, 176
Triangle inequality, 8

INDEX

Discrete spectrum, Point spec­
trum, Residual spectrum

m f subs aces 14

314

Stone, 146
Subspaces, see Linear subspaces

r 2

Surface waves 286 290 100
Symbol x>, < x, 26
Symbolic derivative, 141f.

exam les of 142.

Hermitian form and, 104
Hermitian matrix and, 100, 101

Unmixed boundar conditions ei en-
for function with 'um s 142 functions in case of 224
for si num x, 142
symbol for, 141

Symbolic differentiation, 137f., 153
Symbolic function, 137f.

as Green's function for wave equation,
295, 298f.

defined by integrals, 219
definition of, 138, 153f.
derivative of, 139-140
Heaviside function as example of, 140
signum x as, 142

Symbolic operations, 153f.
Symmetry of Green's function, 161, 163,

174
Systems, coordinate, delta functions in,

for self-ad·oint differential 0 era tors
151

Green's function for operators with,
164-167

Variational methods for approximating
eigenvalues, 207

Vector spaces, see Linear vector spaces
Vectors, addition of, 3

as eigenvector, see Eigenvectors
as element of linear vector space, 4
basis, 11, 13, 22
Cauchy-Schwarz inequality for, 6, 8,

40
characteristic, 61

Testing functions, convergence of, 137
definition of, 137

co umn,
comp ex-conjugate,
cornponents of, 94
covariant and contravariant, 22
definition of, 2

or an opera or,
1 C mars ,

Trace of matrix, 28, 93
for similar matrices, 94

Transformations, see Orthogonal trans-

In uc 1 ean space,. .
Invanan ,
length of, see Length of vector
limit of sequence of, 8
linearly dependent, 10-12

Transmission-line equations, 179
solution of, 184

-
orthogonal, see Orthogonal vectors
orthonormal, 16-18

eigenvectors of, 88, 90 represen ta tion of, in terms of basis, 21



spanned by, 11, 12
triangle inequality for, 8

INDEX

incident from infinity, 246-247
incoming, 178

315

Wave equation, 253
Green's function for, 295, 298f.

1

and incoming, as boundary condi­
tions, 178

ri di h 18
lane 246-247
lane olarized electroma netic 180

reflection coefficient of, 182
sound, in a fluid, 180
s ace 290
surface 286 290
transmission, 182-183
transmission coefficient of, 182
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