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Preface

The purpose of this text is to present an integrated treatment of a
number of those topics in mathematics which can be made to depend only
upon a sound course in elementary calculus, and which are of common
importance in many fields of application.

An attempt is made to deal with the various topics in such a way that
a student who may not proceed into the more profound areas of mathe-
matics may still obtain an intelligent working knowledge of a substantial
number of useful mathematical methods, together with an appropriate
awareness of the foundations, interrelations, and limitations of these
methods. At the same time, it is hoped that a student who is to progress,
say, into a rigorous course in mathematical analysis will be provided, in ad-
dition, with increased incentive and motivation in that direction, as, for
example, when he is confronted by the phrase “It can be shown” within
the derivation of a useful concrete result, or when he is led to sense that a
certain new concept is a fertile one and is deserving of being expanded and
made more precise.

The book is a revision of Advanced Calculus for Engineers, published
in 1949, incorporating not only a number of minor changes for the pur-
pose of increased clarity or precision, but also some added textual material,
as well as a very substantial number of additional problems.

The first four chapters are concerned chiefly with ordinary differential
equations, including analytical, operational, and numerical methods of
solution, and with special functions generated as solutions of such equa-
tions. In particular, the material of the first chapter can be considered as
either a systematic review or an initial introduction to the elementary con-
cepts and techniques, associated with linear equations and with special
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iv Preface

solvable types of nonlinear equations, which are needed in subsequent
chapters. The fifth chapter deals with boundary-value problems governed
by ordinary differential equations, with the associated characteristic func-
tions, and with series and integral representations of arbitrary functions in
terms of these functions.

Chapter 6 develops the useful ideas and tools of vector analysis; Chap-
ter 7 provides brief introductions to some special topics in higher-dimen-
sional calculus which are rather frequently needed in applications. The
treatment here occasionally consists essentially of indicating the plausibility
and practical significance of a result and stating conditions under which its
validity is rigorously established in listed references.

In Chapter 8, certain basic concepts associated with the simpler types
of partial differential equations are introduced, after which, in Chapter 9,
full use is made of most of the tools developed in earlier chapters for the
purpose of formulating and solving a variety of typical problems governed
by the partial differential equations of mathematical physics.

The concluding chapter deals with topics in the theory of analytic func-
tions of a complex variable, including residue calculus, conformal mapping,
and applications. Although certain developments in preceding chapters
could be made more elegant and more complete if they were made to de-
pend upon this treatment, introduced at an earlier stage, it is felt that, in
some cases, the knowledge based on a brief initial study of analytic func-
tions may not be sufficiently firm to support significantly dependent treat-
ments of the other topics, but that such knowledge then may better serve
to clarify the other topics when subsequently provided. However, since
most of the treatments of Chapter 10, as well as most of those of Chapters
6 and 7, are independent of the content of preceding chapters, material
from these chapters can indeed be introduced at an earlier stage in a given
course, at the discretion of the instructor. It has been considered reasonable
to assume knowledge of certain elementary properties of complex numbers
in the earlier chapters, even though the solution of the equation x* 4+ 1 =0
then may occasion a personal review on the part of the reader.

Extensive sets of problems are included at the end of each chapter,
grouped in correspondence with the respective sections with which they
are associated. In addition to more-or-less routine exercises, there are
numerous annotated problems which are intended to guide the reader in
developing results or techniques which extend or complement treatments
in the text, or in dealing with a particularly challenging application. Such
problems may serve as focal points for extended discussions or for the
introduction of additional (or alternative) material into a chapter, permit-
ting the text to serve somewhat more flexibly in courses of varied types.
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Answers to all problems are either incorporated into the statement of the
problem or listed at the end of the book.

The author is particularly indebted to Professor E. Reissner for valuable
collaboration in the preliminary stages of the preparation of the original
edition and for many ideas which contributed to whatever useful novelty

some of the treatments may possess, to Professor G. B. Thomas for helpful
suggestions and criticisms, and to Miss Ruth Goodwin for assistance in the
preparation of the original manuscript.

F. B. HILDEBRAND
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CHAPTER |

Ordinary Differential Equations

1.1. Introduction. A differential equation is an equation relating two or
more variables in terms of derivatives or differentials. Thus, the simplest
differential equation is of the form

dy _
T = f(x), )

where f(x) is a given function of the independent variable x. The solution is
obtained immediately by integration, in the form

y=["fax+c, )
where a convenient lower limit is assumed in the integral, and Cis an arbitrary
constant. Whether or not it happens that the integral can be expressed in terms
of simple functions is incidental, in the sense that we define a solution of a
differential equation to be any functional relation, not involving derivatives or
integrals of unknown functions, which implies the differential equation.
Similarly, in an equation of the form

F(x) G(y) dx + f(x) g(y) dy = 0, (3)

we may separate the variables and obtain a solution by integration in the form
F(x) , f 80Dy,

x + (4)
f f (X) G(y)

Usually we desire to obtain the most general solution of the differential
equation; that is, we require a// functional relations which imply the equation.
In the general case it is often difficult to determine when all such relations have |
indeed been obtained. Fortunately, however, this difficuity does not exist in
the case of so-called linear differential equations, which are of most frequent
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2 Ordinary differential equations | chap. 1

occurrence in applications and which are to be of principal interest in what
follows.
A differential equation of the form
ar dn—l
':: + ay(x) Y

A »n—1

a®) +ot a2 tamy = ©

A
Uns UMN

is said to be a linear differential equation of order n. The distinguishing
characteristic of such an equation is the absence of products or nonlinear
functions of the dependent variable (unknown function) y and its derivatives,
the highest derivative present being of order n. The coefficients ay(x), . . ., a,(x)
may be arbitrarily specified functions of the independent variable x.

For a linear equation of the first order,

ao(x)gf + ay(x) y = f(0).

it is shown in Section 1.4 that if both sides of the equation are multiplied by a
certain determinable function of x (an “integrating factor”), the equation can
always be put in the simpler form

£ [p(x) ¥1 = F(o),
X

where p(x) and F(x) are simply expressible in terms of a,, a,, and f, and hence
can then be solved directly by integration.

Although no such simple general method exists for solving linear equations
of higher order, there are two types of such equations which are of particular
importance in applications and which can be completely solved by direct
methods. These two cases are considered in Sections 1.5 and 1.6. In addition,
this chapter presents certain techniques that are available for treatment of
more general linear equations.

Many of the basically useful properties of linear differential equations do
not hold for nonlinear equations, such as

Quzfz-_éiz(ﬂ)”_x
dx X+ dx2+smy 0 dx2+xdx Ty=e

A few special types of solvable nonlinear equations are dealt with briefly in
Section 1.12.

The equations to be considered in this chapter are known as ordinary
differential equations, as distinguished from partial differential equations,
which involve partial derivatives with respect to two or more independent
variables. Equations of the latter type are treated in subsequent chapters.

Before proceeding to the study of linear ordinary differential equations, we
next briefly introduce the notion of /inear dependence, which is basic in this
work.
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1.2, Linear dependence. By a linear combination of n functions u(x),
uy(x), . . . , #,(x) is meant an expression of the form

n

() + cqua() + -+ € (x) = . (), (6)

k=1

where the ¢’s are constants. When at least one ¢ is not zero, the linear
combination is termed nontrivial. The functions w;, u,, . . . , u, are then said to
be linearly independent over a given interval (say @ < x < b) if over that
interval no one of the functions can be expressed as a linear combination of
the others, or, equivalently, if no nontrivial linear combination of the functions
is identically zero over the interval considered. Otherwise, the functions are
said to be linearly dependent.

As an example, the functions cos 2x, cos? x, and 1 are linearly dependent
over any interval because of the identity

cos2x —2cos:x 4+ 1=0.

It follows from the definition that twe functions are linearly dependent
over an interval if and only if one function is a constant multiple of the other
over that interval. The necessity of the specification of the interval in the
general case is illustrated by a consideration of the two functions x and |x|.
In the interval x > 0 there follows x — |x| = 0, whereas in the interval x << 0
we have x 4 |x| = 0. Thus the two functions are linearly dependent over any
continuous interval not including the point x = 0; but they are linearly in-
dependent over any interval including x = 0, since no single linear combination
of the two functions is identically zero over such an interval.

Although in practice the linear dependence or independence of a set of
functions generally can be established by inspection, the following result is of
some importance in theoretical discussions. We assume that each of a set of »
functionsu,, u,, . . . , u, possesses n finite derivatives at all points of an interval
I. Then, if a set of constants exists such that

Gy + couts + -+ + cu, =0

for all values of x in I, these same constants also satisfy the identities

dul du, du

+ S o,

'dx T 2 dx Tt " dx

d2u1 du d%u
n — 0’

b dx? T dx? Tt dx?

n—1 n—1 n—1
cld u1+c2d u2+ -+cd Hn _
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Thus the n constants must satisfy n homogeneous linear equations. However,
such a set of equations can possess nontrivial solutions only if its coefficient
determinant vanishes. Thus it follows that if the functions u,, us, . . ., u, are
linearly dependent in an interval I, then the determinant

A Uy e u,
dy,  du, du,
Wiy, gy ... u)=| 9% 4% dx 9
dn—lul dn—lu2 o dn—lun
dx®™1  dx™1 dx™1

vanishes identically in I. This determinant appears frequently in theoretical
work and is called the Wronskian (or Wronskian determinant) of the functions.
Thus we see that if the Wronskian of u,, u,, . . . , u, is not identically zero in I,
then the functions are linearly independent in 1.

To illustrate, since the value of the determinant

1 x x2 x3 PPN x"’
0 1! 2x 3x%2 --- nx"1
0 0 2! 6x - - n(n— x""2
2 ny __
WLx,x%....,x) =10 g o 31 ... n(n — (n — 2)x""3
0 0 0 O n!

is merely the product of the nonvanishing constants appearing in the principal
diagonal and hence cannot vanish, it follows that the functions appearing in
the first row are linearly independent (over any interval).

Unfortunately, the converse of the preceding theorem is not true. That is,
the vanishing of the Wronskian is necessary but not sufficient for linear depend-
ence of a set of functions. For an example establishing the insufficiency, see
Problem 7.

1.3. Complete solutions of linear equations. The most general linear differ-
ential equation of the nth order can be written in the form
dny dn—ly
—= 4 ay(x
FERRL
Here it is assumed that both sides of the equation have been divided by the
coefficient of the highest derivative. We will speak of this form as the standard

e an_l(x)% + a,(x) y = h(x). (8)
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form of the equation. This equation is frequently written in the abbreviated
form

Ly = h(x), €))
where L here represents the linear differential operator
=2 e d b L@E e (0
dx* | dxn T ax T

The problem of solving Equation (8) consists of determining the most
general expression for y which, if substituted into the left-hand side of (8), or if
operated on by (10), gives the prescribed right-hand side 4(x). When a relation-
ship of the form y = u(x) implies Equation (8), it is conventional to say that
either the relation y = u(x) or the function u(x) is a solution of that equation.

If all the coefficients a,(x), . . ., a,(x) were zero, the solution of Equation
(8) would be accomplished directly by » successive integrations, each integra-
tion introducing an independent constant of integration. Thus it might be
expected that the general solution of (8) also would contain n independent
arbitrary constants. As a matter of fact, it is known that in any interval I in
which the coefficients are continuous, there exists a continuous solution to
Equation (8) involving exactly n independent arbitrary constants; furthermore,
there are no solutions of Equation (8) valid in I which cannot be obtained by
specializing the constants in any such solution.

It should be noticed that this is a property peculiar to linear differential
equations. To illustrate, the nonlinear differential equation

dy)2 dy

— ) —2—=44y=4x—1 11

(dx dx Y (1n

is of first order. A solution containing one arbitrary constant is of the form
y=x—(x—ocp (12)

as can be verified by direct substitution. However, this is not the most general
solution, since the function y = x also satisfies the differential equation but
cannot be obtained by specializing the arbitrary constant in the solution given.
The additional solution y = x is called a singular solution. Such solutions can
occur only in the solution of nonlinear differential equations.

We consider first the result of replacing the function A(x) by zero in
Equation (8). The resulting differential equation, L y = 0, is said to be homo-
geneous, since each term in the equation then involves the first power of y or
of one of its derivatives. In this case, from the linearity of the equation, it is
easily seen that any linear combination of individual solutions is also a solution.
Thus, if n linearly independent solutions u;(x), ux(x), . . . , #,(x) of the asso-
ciated homogeneous equation

Lyg =0 (13)
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are known, the general solution of Equation (13) is of the form

Ya(x) = () + eusx) 4+ + (R = cu(x),  (14)
k=1

homogeneous equation associated with (8)
the constants in Equation (14).

are obtained by suitably specializing

In this connection, it should be explained that we refer to a function as
a solution of a differential equation in a given interval I if and only if that
function satisfies the differential equation at all points of I. Thus, in the
case of the homogeneous equation

L _
-

we say that the general solution is of the form y = ¢; + ¢, x. It may be
argued that since the function y = |x| is a linear function in any interval not
including the point x = 0, its second derivative is zero and hence it is a
“solution’” which cannot be obtained by specializing ¢; and ¢,. However,
it is clear that the first derivative of this function does not exist at x = 0,
and hence the second derivative also does not exist at that point. Conse-
quently, since the left-hand side of the equation does not exist at x = 0, the
equation is not satisfied at this point, and y = |x| cannot be said to be a
solution in any interval including x = 0. In any interval not including
x = 0, the function y = |x| may be replaced by either +x or —x and
hence is obtained from the general solution by setting ¢; = 0 and either
¢cg =1orec, = —1,

Now suppose that one particular solution of Equation (8), say y = yp(x),
can be obtained by inspection or otherwise, so that

Lyp = h(x). (15)
Then the complete solution of Equation (8) is of the form

(]

y = y(x) + yp(x) = cunlx) + yi(x), (16)

k=1

since this expression contains n independent arbitrary constants and satisfies
the differential equation

Ly=Llyy +yp)=Lyg + Lyp=h(x). (17)

Thus it is seen that the process of solving an ordinary linear differential
equation can be conveniently divided into two parts. First, n linearly in-
dependent solutions of the associated homogeneous equation may be obtained;
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then, if any one particular solution of the complete equation is found, the
complete solution is given by Equation (16).

It is frequently convenient to say, “yz(x) is a homogeneous solution of
Ly = h"" in abbreviation of the statement, *“y = y,(x) is a solution of the
associated homogeneous equation Ly = 0.” The term “complementary

solution™ also is used.

It will be shown in Section 1.9 that if the general homogeneous solution of
an nth order linear equation is known, a particular solution can always be
obtained by n integrations. In Sections 1.5 and 1.6 we consider important
special cases in which the homogeneous solution is readily obtained.

1.4. The linear differential equation of first order. The linear equation of
first order is readily solved in general terms, without determining separately
homogeneous and particular solutions. For this purpose, we attempt to deter-
mine an integrating factor p(x) such that the standard form

Y+ a(0)y — h(x) (18)
dx

is equivalent to the equation

di (py) = ph. (19)
X

Since Equation (19) can be written in the form
d 1d
S
p dx
it follows that Equations (18) and (19) are equivalent if p satisfies the equation

and hence an integrating factor is
p = end (20)

The solution of Equation (19) is obtained by integration:
py=fphdx+ C,
so that the general solution of (18) is of the form

=1fphdx+9, 1)
Y4 D

where p is the integrating factor defined by Equation (20), and Cis an arbitrary
constant.
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Example 1. To solve the differential equation
Y a—x e
X e X)y = x €5,

we first rewrite the equation in the standard form,

dy 1 { _ e
dx+ x PP

An integrating factor is then

[(E-1)as
T — elogz—z =xe %,

p=¢e
no constant being added in the integration, since only a particular integrating
factor is needed. The solution is then given by Equation (21),

ée* e*
y=—x' xdx-l—C-;,
X e*
or y=§e’+C;.

It may be noticed that the general homogeneous solution of Equation (18)

C 1
is y;r = rk whereas a particular solution is y, = ; fph dx.

1.5. Linear differential equations with constant coefficients. The simplest
and perhaps the most important differential equation of higher order is the
linear equation,

n n—1
Ly= d’y + a, d _y
dx™ dx"~1
in which the coefficients a, are constants.

We first attempt to determine n linearly independent solutions of the
corresponding homogeneous equation. The appearance of the equation sug-
gests homogeneous solutions of the form e"*, where r is a constant, since all
derivatives of e"* are constant multiples of the function itself,

d
Fota, :{f + a,y = h(x), (22)

dm ef.’l! — rm erm.
ax™
We then have

Le*=("+ay" 1+ - +a,,r+a,)e™ (23)

This result shows that " is a solution of the homogeneous equation associated
with Equation (22) if r is one of the nroots ry, r, . . . , 1, of the characteristic
equation,

r"+ap"1l+4---4a, r+a,=0. (24)
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It should be noticed that this equation is obtained from the associated homo-

dk
geneous differential equation by formally replacing .c'i?y by r*, with the conven-
a°
tion that — = y. If the n roots of Equation (24) are distinct, exactly n
dx®

independent solutions e™*, ..., e™" of the homogeneous equation are so
obtained and the general homogeneous solution is

Vi = ™. (25)
k=1

However, if one or more of the roots is repeated, less than »# independent
solutions are obtained in this way. To find the missing solutions we may
proceed as follows. Suppose that r = r, is a double root of Equation (24).
Then Equation (23) is of the form

Le™=(r— rl)z(r — ra) cee(r — ".n) e

and it follows that not only the right-hand member itself but also its (partial)
derivative with respect to r must vanish when r = r,. The same must then be
true for the left-hand member. Thus we conclude that in this case we have both

L[e®),-,, = Le"" =0

and L[i (e""’)] — Lxe"* =0,
ar r=ry

so that the part of the homogeneous solution corresponding to a double root r;
can be written in the form

c,e"” 4 cyx e = e"1*(¢; + €yX).
By a simple extension of this argument, it can be shown that the part of the
homogeneous solution corresponding to an m-fold root r, is of the form
e (c; + cpx + cgx® + - - - 4 ¢, x™ D).

Hence, to each of the n roots of Equation (24), repeated roots being counted
separately, there is a corresponding known homogeneous solution, and the
general homogeneous solution is determined as a linear combination of these
n solutions.

Example 2. For the equation
dy dy _
ax® dx

the characteristic equation is r®* —r = r(r + 1)(r — 1) =0, from which there
follows r = 0, +1. The general solution is then

0,

y = C]_ + Czex + C3e_m.
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Example 3. For the differential equation

dy  d¥y _dy
ao Pzt mY 0

the characteristic equation is (r — 1)(r — 2)®> =0, from which there follows

r = 1,2, 2. The general solution is then
Yy = Clex + ezx(CZ + C3x).
If Equation (24) has imaginary roots and if the coefficients of Equation (24)
arereal, the roots must occur in conjugate pairs. Thus, if ry = a 4 ibis oneroot,

a second root must be r, = @ — ib. The part of the solution corresponding to
these two roots can be written in the form

A e(a+ib)z + Be(a—ib).t — eax(A ez‘bz + B e—t‘ba:).

In order that this expression be real, the constants 4 and B must be imaginary
By making use of Euler’s formula,*

€ = cos 0 + isin 0, (26)
we find that the solution becomes
e**[A(cos bx + isin bx) + B(cos bx — i sin bx)]
and hence can be written in the more convenient form,
e**(¢, cos bx + ¢, sin bx),

where ¢, and ¢, are new arbitrary constants replacing (4 + B) and i(4 — B),
respectively. Thus real values of ¢, and ¢, correspond to values of 4 and B
which are conjugate complex. Similarly, if @ 4- ib are m-fold roots, the corre-
sponding 2m terms in the homogeneous solution can be written in the real
form,

e*[(ey + cox-+ * * * + ¢, x™ 1) cos bx

+ (cm+1 + cm+2x + e + czmxm—l) Siﬂ bx]

Example 4. The equation

dy _dy
Ez + 22; + Sy = 0
has the characteristic equation r% + 2r + 5 =0, from which r = —1 + 2i;

hence

* Familiarity with this important relation, and with the elementary algebra of
complex numbers, is assumed. Such topics are reviewed in the preliminary sections
of the last chapter.
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Example 5. The equation
dy dy

has the characteristic equation (r* 4+ 1)2 =0, from which r = +i, +i; hence

y = (€, + cpx)cosx + (e + cgx)sin x.

General methods for obtaining a particular solution of the complete non-
homogeneous Equation (22) are given in Sections 1.7 and 1.9. A shorter
method which can be applied in many practical cases is that of undetermined
coefficients. This method may be used when the right-hand side of Equation
(22) involves only terms of the form x™, where m is an integer, terms of the
form sin gx, cos ¢gx, and e**, and/or products of two or more such functions.
Thereason for the success of the method is the fact that each of these functions,
or any product of a finite number of these functions, has only a finite number
of linearly independent derivatives.

If we define the family of a function f(x) as the set of linearly independent
functions of which the function f(x) and its derivatives with respect to x are
linear combinations, the following families may be listed:

Term | Family
!
x™ | oxm xmL xmet L, X2 x, ]
sin gx | sin gx, cos gx
cosgx | sin gx, coS gx
efpx | epx

1

The family of a function consisting of a product of n terms of this type is
readily seen to consist of all possible products of n factors, in which one factor
in each product is taken from the family of each factor in the parent function.
Thus, it may be verified that the family of x2 sin 3x is composed of two-factor
products of terms in the families {x2, x, 1} and {sin 3x, cos 3x}, one term from
each family appearing in each product:

{x2 sin 3x, x sin 3x, sin 3x, x2 cos 3x, x cos 3x, cos 3x}.

The method of undetermined coefficients may now be outlined as follows.
Itis assumed that the general homogeneous solution of the differential equation
has already been obtained, and that any cosh or sinh functions occurring in it,
or in the right-hand member A(x), are replaced by equivalent linear combina-
tions of exponential functions.

(1) Construct the family of each term (or product) of which A(x) is a linear
combination.

(2) If any family has a member which is a homogeneous solution of the
differential equation, replace that family by a new family in which each member
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of the original family is multiplied by x, or by the lowest integral power of x
for which no member of the new family is a homogeneous solution. Only
members of the offending family are so modified. It should also be noticed,
for example, that the presence of €” or sin x in the homogeneous solution does
not require modification of a family containing the product e sin x unless that

product itself is also a homogeneous solution.

(3) Assume as a particular solution a linear compination of all members
of the resultant families, with undetermined literal coefficients of combination,
and determine these coefficients by requiring that the differential equation be
identically satisfied by this assumed solution.

It will be found that in all cases the number of coefficients to be determined
will equal the number of linearly independent functions whose coefficients
must be matched, and that the resultant equations always have a solution.
The detailed proof of this general statement is rather lengthy and is omitted.
A special case is treated, for the purpose of illustration, at the end of Section
1.7.

It should be emphasized that this procedure does not generally apply unless
the differential equation has constant coefficients and has a right-hand member
possessing a finite family.

Example 6. Consider the differential equation

&y _d

P —d—x =2x + 1 —4cosx + 2e~.
The general homogeneous solution is

Y =€ + c2€° + ce".
The families of the terms x, 1, cos x, and ¢® on the right-hand side of the equation
are, respectively,
{x,1}, {1}, {cosx,sinx}, {e%}.

The second family is contained in the first, and is discarded. Since the first family
has the representative 1 in the homogeneous solution, it is replaced by the family
{x, x}. Similarly, the last family is replaced by {x ¢*}. A particular solution is then
assumed in the form

yp = Ax® + Bx + Ccosx + Dsinx + Ex ¢
When y is replaced by yp, the differential equation becomes
—2Ax — B —2Dcosx + 2Csinx + 2Ee* =2x + 1 — 4 cos x + 2¢*.
By equating the coef-ﬁhcients of x,—l: cos x, sin x, and &%, there follows
A=-1, B=-~1, D=2, C=0, E=1.
A particular solution thus is
yp = —x% —x + 2sinx + x ¢,
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and the general solution is
y =0 +Cee® + e ® — x* —x + 2sinx + x €%

1.6. The equidimensional linear differential equation. An equation of the

Orm
PAT/F DI YY

dr _ dn—l
Ly=x""2 + b oSt 4 bn_lx;’—i’ + by = h(x), (27)
where the b’s are constants, )1as the property that each term on the left is
unchanged when x is replaced by cx, where ¢ is a nonzero constant. Thus the
physical dimension of x is irrevelant in each term on the left and, if the b’s are
dimensionless, each term on the left has the dimensions of y. For this reason
we shall refer to this equation as the equidimensional linear equation. The
equation is also variously called “Euler’s equation,” “Cauchy’s equation,”
and the “homogeneous linear equation,” although each of these terms also
has other connotations.
One method of solving this equation consists of introducing a new in-
dependent variable z by the substitution

x = €, z = log x. (28)
There then follows

and hence

Thus, in particular, we obtain
B _dy
dx dz

oy _dy_dy_d(d_),
dx?* dz? dz dz\dz ’

-

dz \dz dz

and, in general, it is found that
=) (G2 ()
x"—= 1) =2} | ==
dx™ dz\dz dz dz m+1)y. (29)

The transformed equation thus becomes linear with constant coefficients, and
y then can be determined in terms of z by the methods of the preceding section
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if the new right-hand member is zero or if it has a finite family (with respect to
z-differentiation). The final result is obtained by replacing z by log x.

Example 7. To solve the differential equation

2% HZJg—x -r2y—.x2-|—4,
we make use of Equations (28) and (29) to obtain the transformed equation
d _dy
— 3= — poz
722 3dz—l—2y e + 2.

The solution is found, by the methods of Section 1.5, to be
Y = €18% + ¢%F + z €% + 1,
or, returning to the variable x,

y =X + cx® 4+ xPlogx + 1.

If the right-hand member is zero, there is a more convenient alternative
procedure which consists of directly assuming a homogeneous solution of the
form

yg =X,
corresponding to the assumption y; = e in the transformed equation. By
making use of the relationship
md"x"
dx™
there follows, with the notation of Equation (27),

Lx={rr—1)--(@—n+1)]
byl — 1) =+ 2]+ + by + b} X

Hence x" is a homogeneous solution if r satisfies the characteristic equation

rr—10)--(r—n+ D)+ bir¢r—1)--(r —n+ 2)]
+r+ b yr+6,=0. (30
This equation can be obtained from the left-hand side of Equation (27) by
dm
formally replacing x™ dlf4 by the m-factor product

xm

ir—1):-(r—m< 1.
Let the n roots of Equation (30) be denoted by r,, r,, . . ., r,. If these roots
are distinct, the general homogeneous solution is of the form

n

yir =, 6™, 31)

k=1

=r(r—1):--(r—m+ 1)x,
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In analogy with the results of the preceding section, we find that the second
homogeneous solution corresponding to a double root r, is

a r
[5 (x ):lr=r1= x™ log x

and the part of the homogeneous solution corresponding to an m-fold root r, is
x"[c; + cplogx + ¢3 (log x)® + - - - + ¢, (log x)™1].

Further, to a conjugate pair of imaginary roots r = a 4- ib there corresponds
the solution
x%[cy cos (b log x) + ¢, sin (b log x)].

The extension to the case of repeated imaginary roots is obvious.

Except in those cases in which the right-hand member is a linear combina-
tion of powers of x (and in certain other cases of little practical interest),
particular solutions of nonhomogeneous equations of type (27) usually cannot
be obtained by the method of undetermined coefficients. However, it is readily
shown by using the substitution (28) that a particular solution corresponding
to a right-hand member of the form x* is given by y; = Ax®, where 4 is a
constant to be determined by substitution, unless x* is a homogeneous solu-
tion. If x® is a homogeneous solution, the trial particular solution should be of
the form yp = Ax® (log x)*, where k is the smallest positive integer for which
this expression is not a homogeneous solution. In other cases, particular
solutions can be obtained by the method of Section 1.9.

Example 8. For the equation

dy ., b
—Z oy = = x2
xzdx2 2x =+ 2y ="+ 2

of Example 7, the characteristic equation (30) becomes
r—1) —2r4+2=r*—-3r+2=0,

from which r = 1, 2. The homogeneous solution is thus

Yir = 61X + coxt.

Since x? is a homogeneous solution, we assume a solution yp = Ax®log x corre-
sponding to the right-hand term x* and a solution y;» = B corresponding to the
constant term, and hence write

yIJ = sz logx 'I' B.

Substitution into the given differential equation gives 4 = B = 1, and the complete
solution is

y = cx + cx® + x2logx + 1.
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1.7. Properties of linear operators. We now consider more critically
certain properties of linear differential operators of the general form
dn-l
dxn—l

L ay() 1 + () S+ a0 T+ e ()

An expression of this sort has no intrinsic meaning by itself, but when it is
followed by a function u(x), the result L u is defined to be a new function of x
defined by the relationship

d" dn—l d )
Lu= (a — +a 4+ a,_ —+a,
“ ® dx® ™ ldx”"1+ + ' dx T

d"u d* 1y du
anﬁ +alz“xm e +an_la +anu.

We speak of L u as the result of operating on u by the operator L.

Further, if L, and L, are two linear operators, we write L,L,u to indicate
the operation L,(L,u), that is, the result of operating on L,u by L,, and similarly
for three or more successive operations. The abbreviations L% = L L u,
L3 = L L L u, and so on are frequently used. In particular, if the operator

d . i
— 1s wriften as D,
dx

D=—, (33)

there follows
D2=i(i)=_d_2_, D3=i(d_2)=£, e
dx \dx dx? dx \dx* dx3

and in general D™ = o Thus Equation (32) can be written in the equivalent

form
L=ayx) D" + ay(x) D" '+ -+ 4+ a,_y(x) D + a,(x)

=i a,_(x) D, (34)
k=0

The operations L,L,u and L,L,u should be carefully distinguished from
each other, since the two operations are not, in general, equivalent. To illus-

d d
trate, let L = — and L, = x — . Then

dx dx
2
Lleu — xi(@) = xﬂ{9
dx \dx dx?
d ( du) d*u  du
d L L Uu=—t1x — _ X — —_—,
an 12t T e\ dx od  dx
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If the order in which the operators L, and L, are applied is immaterial, that
is, if L, L,u = L,L,u, the two operators are said to be commutative. Similarly,
we say that a set of operators is commutative if each pair of operators in the
set is commutative.

It is clear that any two operators of the form D™ and D" are commutative;

so also are two operators of the form a,, D™ and a,D”, where a,, and a,, are
constant. From this fact it follows easily that the set of linear operators with
constant coefficients is commutative.

The commutativity of two linear equidimensional operators, for which
a(x) = b,x*, is seen to depend upon the commutativity of any two operators

n

dam d
of theform L, = b, x™ gt and L, = b, x" et But with the substitution (28),

Equation (29) shows that L, and L, become linear operators with constant
coefficients, and hence are commutative. Thus it follows that the set of equi-
dimensional linear operators is commutative.

It may be remarked, however, that commutativity is the exception rather
than the rule. Thus, for example, the above illustration shows that linear
operators with constant coefficients and homogeneous linear operators are not
in general commutative with each other.

The distributive property of linear operators,

(qLy+e,Ly+ -+ c,LYyu=c Liu+coLou+---+c,Lu, (35
as well as the distributive property of linear operations,
Licyuy + cous + - +cu)y=cLuy+coLug+ -+ +c,Lu, (36)

of which use has already been made, is easily established.

In many cases it is possible to factor a linear operator into the product of n
linear factors. If the factors are commutative, the result of factoring is unique,
the order in which the factors are written being arbitrary. Otherwise, the com-
ponent factors will differ in form according to the position they occupy in the
product.

To illustrate, the operator D2 — 3D +- 2 can be factored uniquely in the
forms (D — 2)(D — 1) = (D — 1)(D — 2). However, the operator xD? + D
factors in two ways, into the products (D)(xD) and (xD + 1)(D). By this
statement we mean, of course, that

(D)(xD)u = (xD + 1)(D)u = (xD? 4 D) u

for any twice-differentiable u.

Use is frequently made of the factoring process in solving linear differential
equations. Thus, in the case of the homogeneous linear equation with constant
coefficients, the operator

L=D"+{+agD*1+:---+a,,D+a,
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can be factored uniquely into the linear factors,
L= —n)D—rg - (D—ry

where ry, 1, . . . , r, are roots of the formal equation L = 0. Thus the equation
Ly = 0 becomes

(D—r)D—r9 (D—r)yu=0,

where each operator operates on the expression to its right. Hence the com-
plete expression will be zero if the result of the first operation is zero. Since any
one of the n operators can be written immediately before y, it follows that a
solution of any one of the n equations

D—rdyp=0 (k=12,...,n)

is a solution of L y, = 0. But these equations are equivalent to
—_— _rk.VH=0 (k=1,2,...,n)

and are readily solved to give the solutions
VH = C™ k=1,2,...,n).

By superimposing these solutions, the general homogeneous solution is ob-
tained in the case where the roots are distinct, in accordance with the results of
Section 1.5. The part of the solution corresponding to m-fold roots can be

obtained as the solution of (D — r)"yy = 0.

Analogous procedures can be applied in other cases. In particular, the
general solution of any linear differential equation with constant coefficients
and arbitrary right-hand side can be obtained by a method illustrated by the

following example.

Example 9. To solve the differential equation

d¥y _dy
Ez-—3a+2y =f(x),

we write the equation in the operational form

(D —2)D — )y = f(x).
Writing next
»n = (D — 1y,

the differential equation becomes
d
(D =2y =f() or 2y =f(x).

This linear equation is of first order and is solved, by using the results of Section 1.4,
in the form

yp =¥ [ €% f(x) dx + c,e*~.
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Next, replacing y; by (D — 1)y, we obtain a second first-order equation,

d
cT)x; -y = ezxfe‘z’” f(x) dx + c,€%,

with solution

y = 1 2€”.

Similarly, it can be shown that the linear equidimensional operator of
Equation (27) can be factored into the commutative factors

(xD—rl)(XD_r2)“'(xD_rn)’
where ry, 7y, . . ., r,, are the roots of the characteristic equation (30). In this

m d m
connection it should be noticed that the operators x™ — and (x —-—) are not

- dx™ dx
equivalent.

The notion of operators is useful in establishing the general validity of
the method of undetermined coefficients described in Section 1.5. To illus-
trate the argument, we here consider an equation of the form Ly =
a cos gx, where L is a linear differential operator with constant coefficients.
Since the operator D* + ¢ annihilates the right-hand member, it follows
that all solutions of the given equation are included in the general solution
of the equation (D? + ¢®)L y = 0. However, if D® 4 ¢®is not a factor of L,
then the general solution of this equation is

y =yg + Acosgx 4+ Bsingx,

where y = yy is the general solution of Ly =0. If D* + 4% is an
unrepeated factor of L, then y; will contain cos gx and sin g¢x, so that
Acosgx + Bsingx then must be replaced by Axcosgx + Bxsingx,
and so forth, in accordance with the rules set down in Section 1.5.

1.8. Simultaneous linear differential equations. Frequently two or more
unknown functions are related to a single independent variable by an equal
number of linear differential equations. Thus, in the case of two unknown
functions x and y and the independent variable ¢, we may have a pair of
simultaneous equations of the form

Lix + Lyy = hy(?)
Lyx + Ly = hy(?)
where the L’s are linear differential operators in 7. The unknown functions x
and y are to be determined as functions of ¢.
When the operators involved are commutative, all unknown functions
except one can be successively eliminated from the given set of equations, to

give a new set of linear differential equations each involving only one unknown
function. We illustrate this procedure in the case of Equations (37a,b).

(37a,b)
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If Equation (37a) is operated on by L, and (37b) by —L,, and if the
resultant equations are added, there follows
(LyLy — LoLy)x +(LyLy — LyLy)y = Lihy — Loh,

or, if L, and L, are commutative,

(L4L1 - L2L3)x == L4h1 - L2h2- (383)

Similarly, to eliminate x we operate on Equation (37a) by —L, and on (37b)
by L,. If L, and L, are also commutative, we then obtain, by addition,

(LiLg — LyLy)y = Lyhy — Lyhy.

Finally, if L,,L, and L,,L, are commutative, the operators of x and y in the
last equations are identical, and we have

Equations (38a) and (38b) can be written formally in the determinantal
form

hy L L, h
Ax = Ay=[T" "' (39a,b)
where A is the operator
Ll L2
A= , (40)
L3 L4

if it is understood that in each term of the expansion of the right-hand sides of
Equations (39a,b) the operator is to be written before the function operated
upon. The formal analogy with Cramer’s rule for solving linear equations by
determinants should be noticed.

Since the same operator affects x and y in Equations (39a,b), it is seen that
the homogeneous solutions of these equations are linear combinations of the
same functions, the number # of independent constants in each linear combina-
tion bging equal to the degree of the operator A. Thus, the solutions of
Equations (39a,b) will contain 2n independent constants.

At this stage of the solution a certain amount of care must be taken. It is
clear that since Equations (37a,b) imply (39a,b), all solutions of the original
simultaneous equations are contained in the solutions of the final equations.
However, since differentiation is generally involved in obtaining (39) from (37),
the converse is not generally true, in the sense that the solutions of (39a,b)
may satisfy (37a,b) only if certain relationships exist among the 2n constants.
These relationships may be determined by substituting the solutions of (39)
into (37a,b) and requiring that the resultant equations be identities. However,
if the coefficients are constants, and if in one of Equations (37a,b) the two
operators involved have no common factors, the relationships are completely
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determined by substitution into that single equation (see Problem 25). If xp
and y . satisfy Equations (37), only the added x;; and y; need be so checked.
An alternate procedure consists of solving only one of Equations (3%9a,b) for
one unknown function and of then substituting this result into whichever of
(37a,b) is more convenient for the subsequent determination of the second

unknown function. The expressions so obtained are then introduced into the
remaining one of Equations (37a,b), to determine possible restrictions on the
arbitrary constants.

The extension of this procedure to cases in which more than two unknown
functions are present leads to results again completely analogous to the state-
ment of Cramer’s rule. Thus, assuming that all operators involved are commu-
tative with each other, the solutions of the equations

le + Lzy + L3Z = hl(f),
Lyx + Lyy + Lgz = hy(1),
Lyx + Lgy + Loz = hy(1)

are also solutions of three linear differential equations each involving only one
dependent variable, one of which can be written formally as

where A=L, Ly Lg|,

if in each term of the expansion of the first determinant the function is written
after the operators. If the operator A is of order n, the solutions of the three
equations so obtained involve 3n arbitrary constants, and possible restriction
on these constants must be obtained by substitution into the original equations.
This procedure may be quite laborious if several unknown functions are
present. A method of solving such sets of equations with reduced labor in
certain problems, in cases when the operators have constant coefficients, is
given in Chapter 2.

It may be stated that if all operators involved are commutative, the total
number of independent constants present in the solution of a set of linear differen-
tial equations is equal to the order of the operator A. This order cannot exceed
the sum of the orders of the several equations and in certain cases may be less
than this number.
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To illustrate the preceding method, we solve the equations

2

a;—):—x—Zy-——t
t

p 3 (41a,b)
Yy —3x =1

dr* :

In operational form, these equations become
(D2——I)x—-2y=t}

—3x+(D*—2)y=1
Equation (40) gives

(D2—1) =2
e = D4 b 3D2“— 4,
-3 (Dt —2)
and Equations (39a,b) then become
(D' — 3D — dyx = | —? (DP—2)t+2=2—2t (42a)
— — 4)x = = —2n+2=2-—-12t a
{ (D?—2)
and
(D*—=1) 1t

(D% — 3D% — 4)y = =(D*— DI +3t=3t—1.  (42b)

We notice that the characteristic equation for both x and y is obtained by
formally replacing D by r in the expression for A = 0,

P — 32— 4 =0,
from which r = 4-2, +i. Hence we obtain
Xgr = €% + ce7? 4 ¢35 cost + ¢,y sint,
yu = die? + dye3 + dycos t + dysin t.

Particular solutions of Equations (42a,b) are readily found by inspection
or by the method of undetermined coefficients,

xp =}t — 4%, yp=1%1—1}t

To determine the relationships which must exist among the ¢’s and d’s, we
may first verify that xp and yp satisfy Equations (41a,b) as well as (42a,b).
Hence we then introduce the expressions for x,; and y,; into the left-hand
sides of Equations (41a,b) and require the results to be identically zero. Using
first Equation (41a), we find the conditions

dy = 36y, dy = 3¢3, dy = —c3, dy = —¢y
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The same conditions are obtained by using Equation (41b) (see Problem 25).
Thus only four of the eight constants are truly arbitrary. Retaining the four ¢’s,
we write

Xy = €16% + c,e7? + cgcos t + c4sint,

t _ -
H — 2 \*1 2 3 4 B

and the final solutions are
X = % + c,e™2 4 c5cost + ¢gsint + §t — 4,
y =3 (c,e® + c,e7 ) — (cgcost 4+ cysint) — 3t 4+ §.

It may be seen that Equation (42a) could be obtained directly, in this case,
by solving (412) for y and substituting the result into (41b). In more complicated
cases the present procedure is generally preferable.

If the expression for x; were introduced into the left-hand side of Equation
(41a) and the right-hand side were replaced by zero, an expression for yy
would be found directly, in this case, in terms of the constants of x. Substitu-
tion of these results into the left-hand side of Equation (41b) would thenshow
that no further restrictions on the constants were necessary. If Equation (41b)
were used to determine y, in terms of xg, the two new constants introduced
would be determined in terms of the ¢’s by substitution into (41a).

The solutions of Equations (41a,b) can also be obtained by a slightly
different but equivalent method which is of some practical interest. Since the
coefficients in both linear equations are constants, it can be assumed initially
that homogeneous solutions exist of the form

Xy = e, yy = dpe™.

By introducing these assumptions into Equations (41a,b) and replacing the
right-hand sides by zeros, there follows

—3¢, + (2 — 2)d, = 0.

In order that nontrivial solutions of these equations exist, it is necessary that
the determinant of the coefficients of ¢, and d; vanish, giving the characteristic
equation obtained previously. If r, satisfies this equation, the coefficient d, can
be expressed in terms of ¢, by either of the two equations. Thus, using the first
equation, we have

2
r,— 1
dk = k 2 Ck.
For the roots r = 4-2 there follows d,, = $c,, whereas for r = 4-i there follows
d, = —c,. These results are easily shown to lead, by superposition, to the

previously obtained homogeneous solutions.
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In order to obtain particular solutions directly from Equations (41a,b),
the method of undetermined coefficients can be applied if all terms on the
right-hand sides of the equations are taken into account in constructing the
families. Thus, from Equation (41a) we have the family {z, 1} and from (41b)
the family {1}, which is contained in the former family. Since there is no

representative in either homogeneous solution, we assume particular solutions
of the form
xp = At + B, yp=Ct+ D.

Substitution into Equations (41a,b) gives
—(A+2C) —(B+ 2D) =1,
—(BA 4+ 2Cy — (3B +2D) = 1.
In order that these be identities, we must have
—A—-2C=1, B+2D=0, 3442C=0, —3B—2D=1
from which there follows
A=% B=-} C=-} D=}

in accordance with the previously obtained results.
In order to illustrate a special situation, we consider also the set

dx

27— —3x+ y=4¢
dt
&y (43)
x+2—=—-3y=0
dt
If Equations (39) and (40) are applied to these equations, there follows
d2x dx ]
— —3=42x=—¢
dr® dt o
d® dy K ()
Y ¢
— — 3= 4+ 2y=—
de dt T ¢ )
from which one obtains
Xy = cy% 4 c,et
H 1 2 (45)
Y = die¥ + dye'
and
xp=1tet
d ] (46)
yl) — tet

But here it happens that xp and yp do not satisfy the original Equations (43).
Thus it is necessary to substitute the sums x; 4+ xp and yy 4 yp into
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Equations (43) for the purpose of obtaining conditions on the constants in
Equations (45). This process gives, finally,

dz = 2 + 02, dl = —C;. (47)

1.9. Particular solutions by variation of parameters. We next derive a

method for determining the complete solution of any linear differential
equation for which the general homogeneous solution is known.
Suppose that the general homogeneous solution of the equation

n n—1
Ly=22 4 0024 b P b a )y =hx) (48
dx® dx" dx
has been obtained in the form
Vi =) cuy), (49)
k=1

where the u’s are n linearly independent homogeneous solutions and the ¢’s
are n arbitrary constants or “parameters.” We will find that a particular
solution of the complete equation can be obtained by replacing the constant
parameters c, in the solution of the associated homogeneous equation by
certain functions of x. Thus, we assume that

yp = Culx) () (50)
k=1

is a solution of Equation (48) and attempt to choose the n functions C, suit-
ably. Since we have n functions to determine, and since the requirement that
Equation (50) satisfy Equation (48) represents only one condition, we have
n — 1 additional conditions at our disposal.

Differentiating Equation (50) and using primes to denote differentiation
with respect to x, we obtain

In order to simplify this expression, we require as our first condition that the
second summation vanish,

D Ciuy =0, (51a)
k=1
There then follows
dVP . ’
— = C u
2 Z "
d2YP < ” 4
and =P _» Gu,+ > Clu.
dx? ; Kk ; M
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As the second condition, we require again that the sum of the terms involving
derivatives of the C’s vanish,

Z Clul = (51b)

Proceeding in this way through the (n — 1)th derivative, we have as our
(n — 1)th condition the requirement

D Cufr? =0 (51¢)
and the (n — 1)th derivative is

_Z Cku(ﬂ 1)

The expression for the nth derivative is then

d‘;x_}’P _Z Cku(n) +Z Clu (n—l)-

By introducing the expressions for yp and its derivatives into the left-hand
side of Equation (48), we find that the final condition, that Equation (50)

satisfy (48), becomes
Lyp —Z Ck“(ﬂ) + a1(x)z Ck“i(c"—l) +
k=1
+ @uos(%), Cottf + a,(%)), Cotty +, Cufr™ = h(x).
k=1 k=1 k=1

Combining the first summations, we obtain

3 n n—1
ZCk[d kL ay(x )d = E

i=1 dx" dx""1
+ a,_ 1(x) + an(x)uk] +Z Ciu"1 = p(x).

Now, since each function u, satisfies Equation (48) with #(x) replaced by
zero, and since each bracket in the first summation is precisely the result of
replacing y in the left-hand side of Equation (48) by a function u,, the first
summation vanishes identically, and the final condition becomes merely

D Gt = k(). (51d)
k=1
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In summary, the n conditions imposed on the n unknown functions can be
written in the expanded form
[ Ci®¥) (%) + Cix) () + - - + Cox) uox) = 0
Ci(x) u3(x) + Co(x) ug(x) + - - - + Co(x) up(x) =0

Cix) " "2(x) + Cox) " 200 + -+ + Cux) w2 (x) =0
[ Ci0) 1" 7P(x) 4 Co(x) g ™V() + -+ + Cox) i 0(x) = h(x).

If this set of equations is solved for Cj, C,, ..., C, by Cramer’s rule, the
common-denominator determinant is seen to be the Wronskian of u,, u,,
u,*

If the solutions Cj, C,, . .., C, are integrated and the results are introduced
into Equation (50), the result is a particular solution of Equation (48) for any
choice of the n constants of integration. If the constants are left arbitrary, this
procedure yields the complete solution of Equation (48).

It is important to notice that Equation (48) was written in “standard form.”

n

If the coefficient of Z—y in Equation (48) were ay(x), the last equation of (52)
h(x)

would be modified by replacing A(x) by

ay(x)’
In particular, for a second-order linear equation of the form
d2
F + al(x)— + ax(x) y = h(x), (53)
there follows
¥y = Ci(x) uy(x) + Cy(x) uy(x), (54a)
| 0 u,
where C, = h uy| _  h(x) uy(x)
Uy Uy W [uy(x),u,(x)]
uy Uy
and, similarly,
C = h(x) uy(x)
2 - .
_ W uy(x),uy(x)]
Thus we can write
= [ e o e
JUo(X
. e (54b)
C2 =f h(x) ul(x) dx + ¢,
W [uy(x),uy(x)]

* It is known that if the coefficients a,, a., ..., a, are continuous in an interval /, the
indicated derivatives exist in /, and furthermore the Wronskian of the linearly independent
functions cannot vanish in /. Hence a unique solution always exists.
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and the introduction of these results into Equation (54a) gives the required
solution.

If A(x) is not given explicitly, but the general solution is required for an
arbitrary h(x), we may combine the result of this substitution into a more
compact form if before substituting Equations (54b) into (54a) we replace the

dummy variable of integration by a new variable, say £, to distinguish it from
the current variable x which appears as the limit of the integrals. Substitution
of Equations (54b) into (54a) then leads to the result

— ® h(E)[u(&) ug(x) — us(§) uy(x)]
y —f W, (&)rinE)] d& + cyuy(x) + cous(X). (55)

Here x is to be held constant in the £ integration. If A(x) is given explicitly, the
direct evaluation of Equations (54b) and subsequent substitution into (54a) is
usually more convenient than the use of Equation (55).

Example 10. For the differential equation

d%y

s + y = f(x)
two linearly independent homogeneous solutions are u; = cos x, uy = sin x. The
Wronskian is

cosx sinx

) =sin?x + cos2x = 1.
—sinx cosx

Wi(cos x, sin x) =

Thus, use of Equations (54a,b) gives the solution

y= —cosxl:fxf(x) sinxdx +¢;| + sinx[rf(x)cosxdx + c,].

This form is usually most convenient for actual evaluation of the solution when
f(x) is given. The form (55), which is useful in more general considerations, here
takes the form

y = fxf(E) [cos £sin x — sin & cos x]dé + ¢;cosx + cysinx

or y =fxf(5)sin(x — &) dEt + ¢;co8 x + cysinx.
Example 11. For the differential equation
ddy dYy L dy
—2 32 423 _
ot g g =/

we may take u; = 1, uy = €%, ug = e**. Equations (52) then become
Ci + Coe® + Cye® =0,
Coe®™ + 2Cge® =0,
Coe® + 4Cge®® = f(x).



sec. 1.10 | Reduction of order 29

For the determinant of this system we find W(l, %, €2*) = 2¢%=, Solving the three
simultaneous equations, we obtain

Cr=3fx), GC=—e*flx), C;=13*flx)

The solution of the differential equation is then
=13 [ f@Od +o] +e [~ [Tetr@ &+ o
+ e [5 f "% f(8) d + ca]

or, equivalently,
Y=k [FOU — 267 + H-91dE + ¢, + ® + cye™.

It will be shown in Section 1.10 that the Wronskian of two homogeneous
solutions of Equation (53) is of the form

W(ug,us) = A ez, (56)

where A is a definite constant depending only on the choice of the arbitrary
multiplicative constants involved in the homogeneous solutions u; and u,. It
follows (see Problem 36) that W(u,u,) can be determined if only the values of
%, and u, and their first derivatives are known at a single point. This fact is
useful in evaluating Equation (55) if, for example, the solutions u,(x) and uy(x)
are expressed in terms of power series (see Chapter 4).

It can be shown* that, more generally, the Wronskian of n homogeneous
solutions of Equation (48) is also given by the right-hand member of Equation
(56). The statement of this fact is known as Abel’s formula. From the properties
of the exponential function, it follows that if @,(x) is continuous in an interval
I, the Wronskian cannot vanish in I unless it vanishes identically.

1.10. Reduction of order. One of the important properties of linear
differential equations is the fact that if one homogeneous solution of an
equation of order nis known, a new linear differential equation of ordern — 1,
determining the remainder of the solution, can be obtained. This procedure is
in a sense analogous to the reduction of the degree of an algebraic equation
when one solution is known.

Suppose that one homogeneous solution #,(x) is known. We next write
y = v(x) uy(x) and attempt to determine the function v(x). Substituting vy, for
y in the left-hand side of the differential equation, we obtain a new linear
differential equation of order n to determine v. But since y = ¢ u,(x) is a homo-
geneous solution of the original equation, v = ¢ must be a homogeneous
solution of the new equation. Hence the new equation must lack the term of
zero order in v; that is, the coefficient of v must be zero. Thus the new equation

18 of order n — 1 in the variable %

- . . . . dw
* By differentiating the Wronskian determinant, one obtains the relation i w.
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We apply this procedure to the solution of the general second-order linear
equation

gzx—"; + ay(x) gf + ay(x) y = h(x), G7)

assuming that one homogeneous solution #;(x) is known. Writing
Y = v(x) uy(x), (38)
and introducing Equation (58) into (57), there follows
v"uy + 20'u; + ayv'uy + v(uy + aug + asuy) = h.

But since u, is a homogeneous solution of Equation (57), the expression in
1 g - - q' - * P
parentheses vanishes and the differential equation determining » becomes

v"uy + 20'u; + av'u, = h
or ') + (2“—1 + al)v’ _k, (59)
Uy Uy

This equation is of first order in ', with an integrating factor given by the
results of Section 1.4 in the form

e2logu; +Ja dz Pu?s

where p = eladr, (60)
Hence there follows
v’ =L2 phu, dx +c—12.
) _ _ puy puy
An integration then gives
x ‘ phul dx x
v=f L—T—dx+c1 ix;-i—cz (61)
pu;y pu;y

and the introduction of Equation (61) into (58) yields the general solution

o [ phuy dx g
y= ul(x)f —— dx + clul(x)f — T cauy(x). (62)
p puy

Uz

Thus, if u, is one homogeneous solution, the most general linearly in-
dependent solution of the associated homogeneous equation is of the form

4y = A uy(x) f fui + Buy(x), (63)
1
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where A and B are arbitrary constants with 4 % 0, and a particular solution
of the complete equation is

phu1 dx
y= “1(x)f dx. (64)
. pui

We remark that no constants of integration need be added in either of the
integrations in Equation (64), since the additional terms thereby introduced
can be absorbed into the homogeneous solution. However, if arbitrary con-
stants are introduced in each of the integrations, Equation (64) represents the
complete solution of Equation (57).

In view of Equation (63), the Wronskian of any two homogeneous solu-
tions of (57) is given by

z dx
u, Au, | — + By,
pui
Wu,uy) =

A ny J*dx LB
u, — u — u;
' P . Pxf !

Expansion of this determinant gives Abel’s result in this case,

Wty us) = A _ fein@ (65)
p(x)

Example 12. One homogeneous solution of the equation
d®y d
xz-—— +(x—1) (xl — ) = x2e™®
dx

is seen by inspection to be y = x. To find the complete solution, we first write the
equation in the standard form of (57),

d* dy 1—
-—y+(1 ) 2y xy=e‘”,

dx? dx x2
and find

1 1
al(x) =1 — ;, p(JC) = ;e“

With u; = x, a second linearly independent solution is obtained from Equation (63),
taking 4 = 1 and B = 0 for convenience, in the form
T o
Hy = X -_— dx.
x
The lower limit can be chosen at pleasure. This indefinite integral cannot be evalu-
ated in terms of elementary functions. However, the function

r ,—X —Zeﬂ:
Ei(—x)=f  dx = —dx  (x>0)

w — @
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is a tabulated function, known as the “exponential-integral function.” [See
Reference 7 of Chapter 4, for example, where similar integrals involving (sin x)/x
and (cos x){x, and known as “sine-integral” and ‘“‘cosine-integral” functions,
are also defined and tabulated.] Thus, taking the lower limit to be «, the second
independent homogeneous solution can be taken to be

uy = x Ei(—x),
and the general homogeneous solution is of the form
yu = xle; + ¢ Ei( —x)).
A particular solution is given by Equation (64),

x

r ,—x -——::ea:d T

yp=xf ¢ fe xdx=xf etdx = —x e,
X

if constants of integration are omitted. Thus the complete solution is

y=xle, + ; Ei(—x) — e (x >0).

1.11. Determination of constants. The n arbitrary constants present in
the general solution of a linear differential equation of order n are to be
determined by n suitably prescribed supplementary conditions.

Frequently these conditions consist of the requirement that the function
and its first » — 1 derivatives take on prescribed values at a given point x = a,

Y@=y Y@=yp ... PV P@=w"" (66)
When such conditions are prescribed, the problem is known as an initial-value
problem. In this case it can be shown that if the point x = a is included in an
interval where the coefficients ay(x), . . . , a,(x) and the right-hand side h(x) of
the differential equation, in standard form, are continuous, there exists a unique

solution satisfying Equations (66). Here, if the complete solutioniswritteninthe
form

y =2 cuy(x) + yplx), (67)

k=1

the conditions of Equations (66) require that the constants c, satisfy the »
equations

D cu™@) =y — yiPa@)  (m=0,1,2,...,n—1). (68)
k=1
We notice that the determinant of the coefficients of the constants ¢, is the
value of the Wronskian of the linearly independent solutions u, at the point
x = a, which (as was stated in the footnote on page 27) cannot vanish under
the specified conditions. Thus a unique solution is assured.
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Sets of conditions other than those of Equations (66) may, however, be
prescribed. For example, values of the function and/or certain of the
derivatives may be prescribed at rwo distinct points x = a, x = b. In such cases
a unique solution may or may not exist.

Example 13. The general solution of the differential equation

2

dy

dx®
1S y = ¢; cos x + ¢y sin x. The initial-value problem with conditions 3(0) = y,,
»'(0) = y, has the unique solution y = y, cos x + y§ sin x.

The conditions y(0) = 1, y(=/2) = 1 imply the unique solution y = cos x +
sin x, while the only solution satisfying the conditions 0) = y(=/2) =0 is
the trivial solution y = 0. However, the conditions y(0) = y(») = 0 are both
satisfied if we take ¢; = 0, and hence in this case there exist an infinite number of
solutions of the form y = A sin x, where A is arbitrary.

+y=0

1.12. Special solvable types of nonlinear equations. Although there exist
no techniques of general applicability for the purpose of obtaining solutions
of nonlinear differential equations in closed form, there are several special
types of equations for which such solutions can be obtained, a few of which
are treated very briefly in this section. Here, instead of seeking y as a function
of x, we may be led to determine x as a function of y or to accept as a solution
a functional relationship involving the two variables in a less simple way.

(1) Separable equations. Separable first-order equations have already been
mentioned in Section 1.1.

Example 14. The equation (1 + x¥) dy + (1 + »®) dx = 0 is separable in the
form
dx dy

T+2 142

and integration gives the solution

0,

tanlx + tan~ly = tan~l¢
or x +y=cl —xp).
Example 15. The equation

dy\?
(d_x) —4y +4 =0

d
yields two separable equations when solved algebraically for -Z,

dy

Y oave =1
I +2Vy — 1,
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from which + === 2dx,

provided that the division by Vy — 1 is legitimate, and hence there follows
+Vy—1=x—cor

y=1+(x-o0)~

Since the relation y — 1 = 0 has been excluded in the derivation of this solution,
the possibility that y =1 may also be a solution must be explored separately.
Direct substitution into the original differential equation shows that y =1 is
indeed a solution. Furthermore, it cannot be obtained by specializing the constant ¢
in the relation y = 1 — (x — ¢)% Here the complete solution consists of the latter
one-parameter solution fogether with the *‘singular solution,” y = 1. It can be
verified, in this case, that all the curves which represent particular solutions, in
correspondence with particular choices of the constant c, are tangent to the straight
line representing the singular solution, so that this line is the envelope of those

curves.

(2) Exact first-order equations. A first-order equation, written in the form
P(x,y) dx + Q(x,y) dy =0, (69)

where P and Q are assumed to have continuous first partial derivatives, is said
to be exact when P and Q satisfy the condition

oP 00
— =X 70
dy Ox (70)
In this case, and in this case only, there exists a function #(x,y) such that
du = Pdx + Qdy. (71)

Thus Equation (69) then is identical with the equation du = 0, whose general
solution clearly is

u(x,y) = ¢, (72)
where ¢ is an arbitrary constant.
Since Equation (71) implies
ou ou
—=P, —=0, 73
= % Q (73)
the necessity of Equation (70) follows from the fact that
2 (2) _ 2 )
Ox \dy dy \ox

when the indicated derivatives are continuous. In order to obtain a function u
satisfying the two relations of Equations (73), we may, for example, start with
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the first relation, integrating with respect to x with y held constant to obtain

u(x,y) = | P(x.y) dx + f(3). (74)

Here f(y) is the added “constant of integration,” to be determined by the
second relation of Equations (73), which gives

"Pax+10)= 0
y
and hence
z aP
"VN=0—\| —dx. 75
S)=20 fay x (75)

That the right-hand member is indeed only a function of y, so that f(y) can be
determined (with an irrelevant arbitrary additive constant) by direct integra-
tion, follows from the fact that its partial derivative with respect to x is zero

since

ox
when Equation (70} is satisfied, so that the sufficiency of that condition is also
established.

Example 16. The equation
dy 14 y*+ 3x%y
dc« 1 —2xy —x®

can be written in the form
Gx%y + 2 + dx + (x* + 2xy — 1) dy =0,

and the condition (70) of exactness is satisfied. From the relation
ou
= XY+

there follows # = X3 + xy® 4+ x + f(y). The relation

du 1 9

-é; =x'+2xy — 1
then gives x* +2xy + f'(y)) = x2 + 2xy —~ 1 or f'(y) = —1, from which
f(y) = —y, apart from an irrelevant arbitrary additive constant. Hence the required

solution # = c is

Xy +xpt+x—y=c

(3) Homogeneous first-order equations. A function f(x,y) is said to be homo-
geneous of degree n if there exists a constant » such that, for every number 4,

f(;'xaly) = }-"f(x,}’)-



36 Ordinary differential equations | chap. 1

Thus, for example, the functiens x® + xy and tan~! (y/x) are both homo-
geneous, the first of degree two and the second of degree zero, whereas x2 4 y
is not homogeneous. The first-order differential equation,

P(x.y) dx + Q(x,y) dy = 0, (76)

is said to be homogeneous if P and Q are both homogeneous of degree n, for
some constant n.
Such an equation becomes separable upon the change of variables

y = vx, dy = vdx + xdv. ).

For, since P(x,vx) = x"P(1,v) and Q(x,vx) = x*Q(1,v), this substitution re-
duces Equation (76) to the form

x"P(l,v) dx + x"Q(1,0)(v dx + x dv) = 0
or [P(1,0) 4+ v Q(1,v)]dx + x Q(1,v) dv = 0, (78)

which is indeed separable.
The substitution
x=uy, dx=udy+ ydu

also is appropriate and may or may not lead to a more convenient form after a
separation of variables.
Example 17. The equation
(3y* — x¥) dx = 2xy dy
is homogeneous (with n = 2) and, with y = vx, it becomes
(W — 1)dx + 2xvdv = 0

from which there follows

2dv  d.

21" % (x #0,0% #1)
and hence log |v? — 1| =log|x| + log|c| = log |cx|
or ¥ —1=cx
or ¥ —x? =cxd

The temporarily excluded relations, x = 0 and y = +x, both are seen to satisfy
the given equation and hence in fact are solutions, but they need not be appended
to the solution obtained since they are included in it when ¢ = « and ¢ = 0.

(4) Miscellaneous first-order equations. Most of the other known techniques
for solving special first-order equations in closed form consist of reductions to
linear, separable, exact, or homogeneous forms. Some typical examples follow.
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Example 18. Bernoulli’s equation. The equation

d
ZJ; + Plx)y = Q(xp* (n #1)

can be written in the form

d
2+ Py = o)

which clearly becomes linear under the substitution v = y="+1,

Example 19. The equation

dy_ ax + by + ¢
d« Ax + By + C

can be reduced to a homogeneous equation by writing x =t + hand y =5 + k
and determining suitable values of the constants # and k, provided that aB # bA.
In that exceptional case, the substitution s = ax + by + ¢ renders the equation
separable.

Example 20. Although the equation
Ydx = x(xdy — ydx)

can be treated as a homogeneous equation or as a Bernoulli equation in y (Example
18), the combination x dy — y dx tends to suggest division by y? or by 2, for the
purpose of forming —d(x/y) or d(y/x). Here a division by )%, accompanied by a
division by x, is clearly indicated, leading to the form

dx dx —xd
— }..{..._.........'.x.._)., =
x »
which is exact, since each term is an exact differential, and there follows
log |x| + z
xX+=-=c¢
& Y
or
_ x
Y= e —loglx]"

In this case, multiplication of the equation by the integrating factor x~1y~? makes
the equation exact. In less contrived situations, the discovery of such a factor may be
much less straightforward.

Example 21. The nonlinear Equation (11),

dy\? dy
(‘d—x) —Za+4y—4x—l,
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yields the two first-degree equations

dy _
- = vx — y.
dx 1£2Vx —y

The prominence of the expression x — y may suggest the substitution

X —y=u, 1 - il
which leads to the separable equations

du —
—_— = V
! + 2V,

If it is noticed that the process of separation necessitates the special consideration
of the relation u = 0, the one-parameter solution (12) and the singular solution
y = x then are easily obtained. Equally fortuitous substitutions may suggest
themselves in other cases.

(5) Second-order equations lacking one variable. The general equation of
second order is of the form

dy d*y)
F (x: y o) = 0: 79
Y ax dxt ()
2
containing gf; explicitly. Any such equation can be written equivalently as a
pair of simultaneous first-order equations, in various ways. In particular, we
may write dy
ol A 80
P (80)
d
an dp
dx
di‘;. — (81)
& |dpdy _ dp
Ldy dx dy

in accordance with which Equation (79) can be replaced by either the set
dp) ]
F (x: P = O

Y, P dx

dy _
dx_p.

[ (82)

or the set
.
F(x,y, p,pé-e) = ()

dy

dy
dx_p.

. (83)
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In the general case, both equations of either set involve the three variables
x, y, and p, and hence no one of the equations can be solved independently of
the associated equation. However, if y is not explicitly involved in F, then the
first equation of (82) involves only x and p. If it can be solved, to provide a
relation between x and p, and if the result can be used to eliminate p from the

second relation in Equation (82), then y can be determined in terms of x by
integration of the resulting equation.

On the other hand, if x is not explicitly involved in F, then the first equation
of (83) involves only y and p. If it can be solved, to provide a relation between
yand p, and if the result can be used to eliminate p from the second relation in
Equation (83), then a separable first-order equation in y and x results.

In either case, it may be more feasible to obtain x and y in terms of p, with
p retained as a parameter, than to eliminate p by using the solution of the first
equation of the pair.

Example 22. The equation

dzy dy 3
a® = *\dx
dy dy _p
lacks the variable y. Wlth — = pand —5 T2~ dv there follows
dp
o=
which separates to give
ol
P= Vel — x?
Hence dy = ,
) V= xY 2 — x%

from which there follows

x
y=4sinl— 4+ ¢ or x =c;sin(y — ¢),

21
Example 23. The equation
dy _ (dy\*
Y = \ax

d’  dp
) PE)—;’ there follows

d
P()’Zf, —P) =0

y-q—p=p or p=0.
dy

!
where ¢; = +¢;.

d
lacks the variable x. With Ey = pand =

and hence
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The first alternative gives

P =)
which includes the second alternative p = 0 as a special case, and hence the general
solution is

y=c i
Example 24. The equation
d%y
i

lacks the variable x. Whereas it can be solved by the present method, it is linear in y
and is much more easily solved by the methods of Section 1.5.

Example 25. The equation

dy\*d®y |+ dy\*?
dx] dx® dx
lacks both x and y. If the absence of y is exploited, there follows

p’%=l+p2

and hence
x=p—tanlp + ¢,

This relation can be used to eliminate x (rather than p) from the relation

dx
@=p¢=p$¢,
to give

dy = p|1 ! d—Psd
y_P _l+p2 P—1+P2P'

y=3 —tlog(p* +1) + ¢,
Here the solution provides a parametric representation of x and y. The fact that
d
the parameter p happens to be identifiable with d_i may afford a subsequent added
convenience.

Hence
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PROBLEMS

Section 1.1

1. Differentiate each of the following relations with respect to x and, by using
the result to eliminate the constant ¢, obtain a first-order differential equation of
which the given relation defines a one-parameter solution:

(@) y = ce, (b) y = ce*”* + 2x,
1

©y=-—x d) y ==,

() xX*+ )2 =23, (f) y =cx + &3

2. By differentiating each of the following relations twice, and eliminating the
constants ¢; and c; from the three resultant equations, obtain a second-order
differential equation of which the given relation defines a two-parameter solution:

(@) y = 1€" + cpe ™, (b) y = €%(c, + cax),
(©) y =c;cosx + cg5in x, (@) y = %7, *
©y-212 @ (x—e)t+( —cf =1.

Cg'l‘x’

3. Obtain the general solution of each of the following differential equations:

(a %=2xy, () ydy + Y1 —y®dx =0,
©d—-Pde+U —xDdy =0, (VI _Eydy=v1— pxdr.
Section 1.2

4. Prove that ¢"1* and e"s* are linearly independent over any finite interval if
r #* Fa.

5. Prove that e and x €™ are linearly independent over any finite interval.

6. If u(x) and uy(x) are linearly independent, prove that Ayu,(x) + Agug(x)
and Byu,(x) + Byuy(x) are also linearly independent if 4,B; — 4,8, # 0.

7. By considering the functions «; = x® and 4, = x® |x| over an interval includ-
ing the origin, show that identical vanishing of the Wronskian of «, and u, over an
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interval does nor imply linear dependence of «; and u, over that interval. (Notice that
us = x*sgnx and u, = 3x®sgnx for all x, where sgnx = +1 when x > 0,
sgnx = —1 when x <0, and sgn 0 = 0.)

8. Suppose that «, and u, both satisfy the linear differential equation

(yY +qr="=0,
where p and g are functions of the independent variable x. Show that there follows
uy(puy) ~ uy(puy)’ =0,

and that this equation is equivalent to the equation (pW#)’ = 0, where W is the
Wronskian of u; and «,. Hence deduce that W = A/p, where A is a constant.

Section 1.3
9. If y = uy(x) and y = uy(x) satisfy the homogeneous linear equation
dr dr1
dx{ + a,(x) dxﬂ_)l’ + o 4+ ag(x)y =0,

prove that y = c,u;(x) + cpup(x) is also a solution, for any constant values of ¢;
and c,.

10. Verify that u; =1 and u, = log x each satisfy the nonlinear equation
Yy +y? =0, but that y = c,u; + cyuy is not a solution unless either ¢; =0 or
C2 = 1

11. If y'} and ' are two linearly independent particular solutions of the
nonhomogeneous linear equation

d2y
e + al(x) + ax(x)y = h(x),

show that the function u; = y'}} — y'p satisfies the associated homogeneous
equation (in which 4 is replaced by 0).

12. Verify that y = log x reduces the nonlinear expression y” + y’2 to zero, and
that y = x reduces it to unity. To what does the sum y = log x + x reduce it?

Section 1.4
13. Solve the following differential equations:

dy dy
(a) X ky = x*  (k constant), (b) I —ytanx = x,

Y | ytanx — 0 2 2si —0

(c)dx+y an x = sec x, ()dx+(y— sin x) cos x = 0,
d

© (2 — 1)—Z 42y =(x + 12, () x*log xdy + (xp — 1)dx =0,

® 2xy — 2 =t (h) ydx = (x + y*) dy.
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14. Show that the substitution # = y'~" reduces the nonlinear equation

dy .
o + a)(x)y = h(x)y n#1)

to a linear equation. (This equation is often called Bernoulli’s equation.)

Section 1.5

15. If two roots of the characteristic equation (24) are r = +a, show that the
corresponding part of the homogeneous solution can be written in the form

y = ¢y cosh ax + c; Sinh ax,
where sinh ax and cosh ax are the hyperbolic functions defined by the equations
) e — g™ e + e79®
sinh ax = — cosh gx = —

16. If two roots of Equation (24) are r = a + b, show that the corresponding
part of the homogeneous solution can be written in the form

y = €**(c, cosh bx + ¢y sinh bx).

17. Solve the following differential equations:

dy dy _dy _dy
(a)——d—x—2y-0, W5 -3 5 Tr=0
dty dy diy d3y d%y dy
(C)de—Zd—x-l-Zy-—O, (d)@—453+732—65+2y-—0,
dS 2
(e)@y—y=0, (f)a;);—Ziy=0 @ = —1).

18. The following differential equations arise in dealing with the problems
noted. Find their complete solution, assuming that & is a nonzero constant:

(a) 2y _ kiy =0  (vibration of a beam),

4
(b) + 4kly =0 (beam on an elastic foundation),

dl a:
© d;" — 2k? de’l + k*y =0  (bending of an elastic plate).

19. Use the method of undetermined coefficients to find the complete solution
of each of the following differential equations:

d% d%
(a) + Ky =sinx (k% #0,1), (b) + y =sin x,

d“y o &y _
(c)dxz—y—smx, (d)@—y-e”,
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dy dy :
© Z5-y=xe 0 75 —2-+2 =sinx,
d2y dy . d%y dy
® Zx—i—ZZ-x+2y-—-e’smx, (h)z-x-z—92x-+20y=4x’ea°,
) Y _ Y o 3ee 4 10sinx —4
(1)@—d—x—y— + 10sin x — 4x.
Section 1.6
20. Solve the following differential equations:
d2 d d? d
@ 35 + x> —ky =0, ®) #% —x2 +2y =0,
d? a2 d
© ﬁ£—2y=o, (d)x’é—xay+y=0,
d? d? d
(e) x3§y+2xzzx{—xa—i+y=0,
d2y dy d2y dy
®) -3 +2x —nn+ 1)y =0, @ S +x - —y=x,
dy  dy N ) 4
(h) xzﬁ+xa—y—x, @ x’E—4xd—x+6y=6x+12.

Section 1.7
21. Show, by direct expansion, that

(x® D¥)(x D) = (x DXx® D?)
but that (x D)? # x% D3,
22. Use the method of Example 9 to obtain the general solution of the equation
(D —r XD —rdy =f(x) (rp #ry),
where r; and r, are constants, in the form
y =e J‘ e [ J‘ e"® f(x) dx] e dx + c1e"® + cqe™".

23. (a) If the notation

1
Y9 = 5— f)

d
is used to indicate that y(x) satisfies the equation (D — r) y= f, where D = o and
r is a constant, show that

—— f0) = e f e f(3) dx,

where an arbitrary additive constant of integration is implied in the integral.
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(b) Verify that, with the notation of part (a), the expression

1 1 1
Y= —mxp-ry/™® =0 —-rzl:D —rlf(")]
satisfies the equation (D — ry)(D — rp)y = f. Hence obtain the general solution of

that equation in the form
y = et J‘m e(rl—r.)a:[J‘w e_"l‘“f(x) dx] dx,
where an arbitrary additive constant is implied in each integration.
24. Verify that, with the notation of Problem 23(a), the expression

_ 1 1 1
y—[rl——rz(D—rl_D—rz):If(x)

_ 1 1 1
—rl—rzl:D——rlf(x)_D—rgf(x):l

satisfies the equation (D — r))(D — rg)y = fwhenr, # r,. Hence obtain the general
solution of that equation in the form

l:erlx J’ z e~ f(x) dx — em® f z e f(x) dx:l

when r; # rg, where an arbitrary additive constant is implied in each integration.

y=:

ry —rg

Section 1.8

25. Suppose that the coefficients in Equations (37a,b) are constants, With the
symbols R, = Lyx + Lgy —h, and Ry = Lgx + L,y — hy, Equations (37a,b)
become

Rl = 0, R2 = 0, (a,b)
and Equations (38a,b) or, equivalently, (39a,b) become
LRy, — LyRy =0, LRy — LyR, = 0. (c,d)

Show that if solutions of (c,d) also satisfy (b), so that Ry = 0, there follows also
LR, = 0, LgR, = 0. Hence, noticing that these two equations can have a non-
trivial common solution (R, # 0) only.if L; and L, have a common factor, deduce
that if all the coefficients in Equations (37a,b) are constant and if, in either of
Equations (37a,b), the two operators involved have no factors in common, the restric-
tions on the constants appearing in the solutions of Equations (39a,b) are completely
determined by substitution into that equation. Otherwise, the solutions of Equations
(39a,b) must be checked by substitution into both of Equations (37a,b).

26. Hlustrate the results of Problem 235 in the case of the simultaneous equations

d’y+dx 0
drt  dt
dy dx
LZ+Z+x_
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27. Find the solution of each of the following sets of equations:
dx (dx dy

—_— =3x — - -2 — 2t
2a't Ix—y i +x=2e
aj) A b P,
@) dy ® d2x dy
2— =3y — x _— — = | 3x —y =4et
dt d ’ | dff dr 7 ’
d*  dy (& 1dy
H‘}E—I—4x=21 :172' 2d2 + k“x =0
c) < (d) +
N 2% 4 30 Y 94X ey o
a “tar Y=Y @ T aE TRV T
O 2y =T —1 i Ix +y=0
pr x + 2y e« — . dt2+dt+dt+ x+y=
(e) < <
I a2y —9e 41, N, ~0
Ld2+ x +2p= + d12+dt+x+y—,
' ﬁ B 2
d = &X
1Y e
(g o =X Y
dz _1 3
dt =2y + 3z
28. Find the solution of each of the following sets of equations:
[ o dx 3 ( dx oy
( a7 ‘ar
a) -
dy dy
2:d—t—3y—x, (b)#tE—Bx—Zy
t;t' =2y + 3z
Section 1.9
29. Solve by the method of variation of parameters:
dy d%y
(a) p + a)(x)y = h(x), (b) + y = cot x,
2 d2y
(c) + y = sec x, (d) o + y = log x,

dy dy d% dy .
(e)az—22x+2y—e’tanx, (f)x——4x2—+6y x?sin x,

d* d
® x’d—;; — 23&"1—';’c + 2y = xlog x.
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30. The differential equation
dly dy
ait e =0
possesses solutions «;(x) and ug(x) which can be represented by series, valid near
— 0. the leadi ¢ whicl collows
ul(x)=1+%x3+---, u2(x)=x_%x2+....
Use Abel’s formula to show that W(u,.u) = ¢=®, and hence deduce that the
general solution of the equation

d’ dy
p + d_x — Xy = h(x)

is of the form
y = f " h(E) [uy(§) un(x) — ug(€) iy (X)) € dE + cun(x) + cqus(x).

Section 1.10

31. Verify that y = ¢® satisfies the homogeneous equation associated with
(x —1)y" — xy’ + y = 1, and obtain the general solution.

32. Verify that y = tan x satisfies the equation y” cos? x = 2y, and obtain the
general solution.

33. One homogeneous solution of the equation

d2y dy
(1 =25 — 22— + 2y = 6(1 ~ %)

is y = x. Find the complete solution.
34. One solution of Legendre’s equation,

d2y dy
(1 _xz):i;z —2x£ + n(n + l)y = 0,
is called P,(x). Show that a second solution is of the form

P.(%) f % dx
" T = APr

35. One solution of Bessel's equation,

d _dy
xzd—xz +xa+(x2 —pz)y = 0,

is called J,(x). Show that a second solution is of the form
z  dx

7o) f T, OF
36. Use Abel’s formula (65) to show that if #, and u, are solutions of
d®y
dx?

in an interval 7, and if we write

dy
+ ay(x) = + ayx)y =0

p=eln®,
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then the Wronskian of «, and u, is given by the expression

Wluy(x), ug(x)] = ﬁ((—ax;

where x = a is a point in the interval 7.

u(a) us(a)

uy(a) ug(a)

37. In the differential equation,

a2 d
?&Z + a,(x) Exz + ax(x)y = h(x),

d
make the substitution y = #(x) v(x) and determine » so that the coefficient of 2——‘; in

the resultant equation vanishes. Thus, show that, if p = e/%1%, the substitution
y = u/Vp reduces the differential equation to the form

d2u 1 da -
—Z(af + 2‘]!—x1 —4a2)u = Vp h(x).

38. Use the result of Problem 37 to show that Bessel's equation (Problem 35)
takes the form
d®u 1
—_ 2t by =
xiog + (x’ P+ 4)u 0

with the substitution
U
y ===
x
Section 1.11
39. A fundamental set of solutions of a linear differential equation of order n,

relative to a point x = a, may be defined as a set of n solutions u,(x), ug(x), .. .,
u,(x) such that

ua) =1, w@ =uj@ =" = uﬁ""l)(a) = 0;
us(a) = 0, uz(a) =1, uy(a) =+ = ug"l)(a) = 0;
U @) = up@) =+ =ul*a) =0, P V@) =1.

(a) Deduce that the solution of the initial-value problem in which the values
@) = yo, Y@ = Ygs oo » Y Na) = yP—D are prescribed is then given by

n
YD = D 9P u ).
k=1
(b) Show that the Wronskian of a fundamental set of solutions, relative to
x = a, is unity at x = a.
40. Show that the functions u; = 1, u; = sin x, and u3 = 1 — cos x comprise a
fundamental set of solutions for the equation
b o_,
dx® dx
relative to x = 0.
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41. Show that the functions cosh x and sinh x constitute a fundamental set of
solutions relative to x = 0 for the equation

(See Problem 15.)
42. Obtain a fundamental set of solutions for the equation
dly
7= IR
relative to x = 0.

43. (a) Determine those values of the constant & for which the differential
equation y” + k%y = 0 possesses a nontrivial solution which vanishes when x = 0
and when x = a, where a is a given positive constant.

(b) Determine those values of k for which the differential equation
" + k%y = 1 possesses a solution which vanishes when x = 0 and when x = a.

Section 1.12
44. Solve the following:
(@ 2x)* + pydx + 3x*2 + x — 2y)dy =0,
(b) Bx%y — ydx — 3xy* — x¥)dy =0,
(¢) e(ydx + dy) + e¥(dx + xdy) = 0.
45. Solve the following:

dy _x—y 3
(a)d_xux+y’ (b) (* + 2xp) dy = 2 dx,
d —
(c) xd—i=y—'\/x2+y2, (@ xdy-—ydx:xtan (i)

46. Solve the following:

dy
(a) xa + y = ylog (xy),

(b) xdy + (y — xdx =0,
(©) ydx + (x —y»dy =0,
@D&x+y—-—3Ndy=(x—y+ 1)dx,

dy s _
(e) xa+y+x2y = 0,

) 2xy2 —x)dx + %y + y)dy = 0.
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47. Solve the following:

dzy dy 2 2 dy)2 B
()d2+(dx) = 0, (b) +2x(dx =0,
dy dy\* d%y _ dy\® !
dx? dx] d® dx ?
dy\? d%y
(e) +_y = 0, (f) [6 (Ix) + ]:I d';é = 1.
48. Show that the substitution
— u’
y = Q u’

du , ,
where u” = T reduces the nonlinear first-order equation

d
Ei": + POy + Q(IY* = R(x)

to the linear second-order equation
T (pP-L) % _rou=0
dx? Q/ dx Qu=0.
(The nonlinear form is known as Riccati’s equation.)

49. Use the procedure suggested in Problem 48 to obtain the general solution of
the equation

d
x2;£+xy+x2y2=l

in the form xy = (x® — k)/(x® + k), where k is an arbitrary constant.



CHAPTER 2

The Laplace Transform

2.1. An introductory example. If a function f(¢) is multiplied by e*
and the result is integrated with respect to ¢ from 1 =0 to t = o0, a new
function of the variable s is obtained when the integral exists.* This function
(when it exists) is called the Laplace transform of f(t). Before studying the
properties of such transforms, we illustrate one of their most useful applica-
tions by considering a simple problem.

Suppose that we require the solution of the differential equation

dy t

— o ea , 1

i (D
for positive values of 7, which satisfies the initial condition

W0) = —1. 2)

In place of determining the general solution of Equation (1) by the methods of
Chapter 1, and then determining the arbitrary constant by satisfying Equation
(2), we proceed as follows.

We first take the Laplace transform of both sides of Equation (1), by
multiplying both sides of the equation by e~* and integrating the results with
respect to ¢ from zero to infinity, to obtain the equation

J e_”ﬂ dt —J‘ e *ydt =f e te®dt. (3)
0 dt 0 0

It is assumed, of course, that the separate integrals exist for some range of
values of s.

* The variable s is considered to be a real variable in this chapter. However, all results
which hold when s is rea/ and s > q, for some real value of a, also hold when s is complex
and (real part of 5s) > a.

51
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The integral on the right is readily evaluated,

fwe_“ e®dt = — € w: 1
0 s—a

-(s-a)t

4)

the integral existing when s > a. The first integral on the left in Equation (3)

’
0 Ss—a

can be integrated formally by parts to give

J e ™ :% dt = e”® y(t)| + sf e *ydt
0 0

0

0

= —y(0) + SJ e” " ydt
0

=1+ sjwe"‘ y dt, (5
0

assuming that e~* y(f) approaches zero, for sufficiently large values of s, as

d
t — 00. Thus, the transform of ;i-th is expressed in terms of the prescribed initial
value of y and in terms of the transform of y itself.
If the results of Equations (4) and (5) are introduced into (3), there then

follows

(s—l)j e~ ydt = ! —1
0 s —a

© 1—5

oty gt = 9 . 6
o J;e Y (s — (s — a) ©)

The original problem is now apparently reduced to the problem of determining
a function y(t) whose Laplace transform is given by the right-hand side of
Equation (6). To determine such a function, we first expand this expression by
the method of partial fractions, to obtain the equivalent form

®© 1 1 a 1
e %ydt = — . 6a
J; Y a—1s—a a—1s—1 (6a)

Reference to Equation (4) then indicates that, since 1/(s — a) is the transform
of €%, the first term of (6a) is the transform of ¢*‘/(a — 1) and the second term
the transform of —aet{(a — 1). Thus, (6a) will be satisfied if we write

(e" — ae'), (7

Y a—1
when a # 1. A corresponding expression in the case a = 1 can be obtained
by taking the limit as @ — 1, in the form y = (t — 1)e’.
With this expression for p, the validity of the transition from Equations (1)
and (2) to (6a) is readily established when s > a. Still, it is by no means
obvious that (7) is the only solution of (6a). That is, while (1) and (2) are known
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to have a unique solution, it is conceivable that (6a) could have several solu-
tions, only one of which would then also satisfy (1) and (2).

However, direct substitution shows that Equation (7) actually does repre-
sent the solution of (1) and (2). Further, it can be shown also that (7) is the
only continuous solution of (6a).

Although this procedure has the advantage that the particular solution
required is obtained directly, without first obtaining the general solution, it is
clearly desirable to simplify the procedure by eliminating the necessity of
carrying out certain general integrations in each case, and to determine in
what cases such a procedure is valid.

In the remainder of this chapter, certainh properties of Laplace transforms
are investigated and relevant formulas are tabulated in such a way that the
solution of initial-value problems involving linear differential equations with
constant coefficients, or sets of simultaneous equations of this type, can be
conveniently obtained. Thus, for example, use of the tabulated formulas will
permit immediate transition from Equations (1) and (2) to (6), and from (6a)
to the solution (7). Use of the methods to be given will, in general, introduce
a considerable saving in labor over the alternative procedures of Chapter 1.

Laplace transforms are also useful, for example, in connection with the
solution of certain problems governed by partial differential equations (and
integral equations), as will be shown in later chapters. Certain of the properties
developed in this chapter are of principal use in these later applications.

The so-called operational methods to be developed have a close formal
resemblance to earlier techniques developed by Heaviside in a very ingenious
but nonrigorous way. The use of Laplace transforms is to be preferred, since
the relevant derivations can be put on a rigorous mathematical basis, so that
success or failure of the method in a given problem can be predicted with
complete confidence. Also, this technique possesses all the useful features of
the Heaviside technique, as well as certain advantages in flexibility.

2.2, Definition and existence of Laplace transforms. The Laplace trans-
form of a function f(¢), defined for positive values of ¢, is frequently indicated
by the notation #{ f(1)} and is defined, as a function of the variable s, by the
integral*

L) = j:e"‘f(t) dt (8)

over that range of values of s for which the integral exists. The notation f(s),
or merely /, is often used in place of L{f(1)}.
The integral (8) may fail to define a function of s, in particular, because of

* Some authors replace definition (8) by the definition

2{f(t)) == I: e f(t) dt.
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infinite discontinuities in f(f) for certain positive values of ¢ or because of failure
of () to behave in a sufficiently regular way near t+ = 0 or for large values of t.
However, the presence of a finite number of finite discontinuities or “jumps”
will not, in itself, affect the existence of the integral.

A function f(t) is said to be piecewise continuous in a finite range if it is

possible to divide that range into a finite number of intervals such that f(¢) is
continuous inside each interval and approaches finite values as either end of
any interval is approached from the interior. Such functions may thus have
finite jumps at points inside the range considered. At such a point, say t = #,
different limits are approached by f(¢) as t approaches ¢, from the right (that is,
from larger values of r) and from the left (from smaller values). These two limits
are called right-hand and left-hand limits, respectively, and when necessary are
conveniently indicated by the respective notations lim f(¢) = f(f,+) and

lim f(t) = f(t,—). t—>ty 4

t—to—

In illustration, if f(r) is defined to be unity when 0 < ¢ < 1 and zero

elsewhere, then f(7) is piecewise continuous over any range. There follows

also, for example, f(1+) =0 and f(1=) = 1. If f() is 1/V¢ when

0 <1 <1 and zero elsewhere, then f(¢) is piecewise continuous in any
range not including ¢+ = 0 as an interior or end point.

In the developments of this chapter, we consider only functions which are at
least piecewise continuous in every positive range not including zero as an end
point. Then, if we write (8) as the sum of three integrals,

LU} = e ywar= () + [+ [;) e foyd, @)
the second integral on the right exists for all positive finite values of 7, and T.

If, in addition, f(t) approaches a finite limit as t — 0+ or if | f(#)] — oo as
t — 0+ in such a way that for some number n, n <1, the product " f(t) is
bounded near t = 0, then the first integral of Equation (8a) exists.

Finally, a sufficient additional condition to guarantee the existence of the
third integral of (8a), at least for sufficiently large values of s, is the require-
ment that f(#) belong to the rather extensive class of “functions of exponential
order.” A function f(r) is said to be of exponential order if, for some number
So, the product e—** | f(7)| is bounded for large values of t, say for t > T. If the
bound is denoted by M, then there follows, when t > T,

et | f() <M or [f(D] <M e~ 9

Thus, though f(¢) may become infinitely large as t — oo, we see that | ()|
must not “grow’” more rapidly than a multiple of some exponential function
of t. Wesay that f(1)is “‘of the order”” of e** and frequently write f(¢) = O(e™*).
In particular, if lim e~** | f(1)] exists (and is finite) for some 5, > 0, then for

t—

sufficiently large values of r the product must be bounded, and hence f(¢) is
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of the order e*‘. The limit may, of course, be zero, in which case we also
write f(t) = o(e®").

We note that any bounded function is of exponential order with s, = 0.
Other examples are e (with s, = a), €2 sin bt (with s, = a), and r* (with
. . 2 .
Sg any po ve number nomatter now-smaltl). ne-tan On-—¢€ 10{©
exponential order, since e~*t e = et’~%f is unbounded as t — o« for all
values of s,.

If f(¢) is piecewise continuous and of exponential order, then its integral
f; f(u) du is continuous and is also of exponential order. Although it cannot

be said in general that derivatives of functions of exponential order have the
same property, this 1s true in most practical cases.

As an example of a reasonably simple exceptional case, we notice that
though sin (e") is bounded, and hence of exponential order, its derivative
2te* cos (') is not of exponential order.

In case f(1) is of exponential order, and hence satisfies Equation (9) when
t > T, then there follows

le~* f(1)| < e7*'- M e®! = M =%,
Hence, since we have assumed f(f) to be piecewise continuous and since
f:e“"%” dt exists if s > s, it follows that the third integral in (8a) then also

exists when s > s,.
Thus, in summary, the Laplace transform of f(7) exists, when sis sufficiently
large, if f(t) satisfies the following conditions:

(1) f(¢) is continuous or piecewise continuous in every finite interval t; = t < T,
where t, > 0.

(2) 1" | f(2)| is bounded near t = O for some number n, where n < 1.
(3) e | f(1)| is bounded for large values of t, for some number s,.

Although the transform may also exist in other cases, these conditions are
sufficiently weak to include most functions occurring in practice.

For reference purposes, it may be stated that whenever any integral of the
form

f: e *tf(1) dt

exists for s = s, it exists also for all s such that s = s,. Also, it is then true that

lim [ e™*f(1) dt = [Teetsy ar (10)

§—C

when ¢ 2 s, that

%J:oe_“f(t) dt = fw (dis e'“) f() dt (11)

0
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when s = §,, and that

J: U:e’_“f(!) df] ds = f: [f: e f(1) ds | dt (12)

when s, £ o = f < 0. The remarkable fact that all these operations can be

effected under the integral sign, for any convergent Laplace transform, is of
frequent usefulness.

The direct calculation of Laplace transforms may be illustrated by the
following simple cases:

e

['+] —st |0
2y = eta=—" =L (>o. (132)
Jo s lo s
* oo e-—(s—a)t 0 1
Ll = e Mdt = — = (s > a). (13b)
Jo s—ale s—a
(* o« —st ®
FLlinatl =] e *sinatdt = — s sin at + a cos at
{ } Jo s? 4 02( ) 0
S (s > 0) (13c)
s2 + a2 '

2.3. Properties of Laplace trensforms. Among the most useful properties
of Laplace transforms are the following:

Llaf@) +bg)} = af(s) + bs). (19)
L (LD (9~ [0 + 572 LOD
as f(04) | d*TH(04)
+ s" 8 Fr + + 21 ] (15)
t 1
.?{J; f(u) du} = ;f(s) (16)
Lle® f(1)} = f(s — a). (17)
If f() = [ 0, < a] with @ = 0, then f(s) = e™* g(s). (18)
git—a), t=a

2y = (-2 (19)

L[ 1 — u) guy du} = 7(5) &(5). (20)

In these equations a and b are constants, and n is a positive integer.
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In all cases except Equation (15), we suppose that the functions f(t) and g(t)
satisfy the conditions of page 55. In the case of (15), more stringent restrictions
are imposed. These conditions are stated in connection with the proof to be
given in this section (see page 58).

Equation (14) expresses the linear property of Laplace transforms. Its proof

follows directly from the definition, in view of the corresponding linear
properties of the integral.

Example 1. By using Equations (14) and (13b), we obtain

1 | 1 1 a
] | -t _ et} — — =
F{sinh at} .?{ze" 5€ } %o Gid Fo@

Equation (15) states one of the most important properties of Laplace trans-
forms. It expresses the transform of any derivative of a function in terms of
the transform of the function itself and in terms of the values of the lower-
order derivatives of the function at t = 0 (or, more precisely, the values
approached by these derivatives as r — 0 from positive values). We consider
first the case when n = 1, for which, from the definition,

3){‘”—(‘)] =re-“mm.
dt 0 dt

An integration by parts gives
f e-—st df(t) dt — e—stf(t) +
0 0

dft

if f(¢) is continuous and —— o is piecewise continuous in every interval (0,7).*

sjme""f(t) dt
0

But since f(t) is of exponential order, the integrated part vanishes as t —
(for s > s,), and there follows

AL = 50— 50 (152)

Similarly, in the case n = 2, integration by parts gives

g{def(t)] :fme—st dgf(t) dt
di® 0 dr®

= e"”ﬂ—) 00+ ste'S‘ af (1) dt
dt lo 0 dt
ot YOI Tt y{df(t)}
dt dt

* Unless these conditions are satisfied, the formula for integration by parts may not be
valid.
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df d? df .
if & is continuous and pr piecewise continuous. If 7 is also of exponential
order, the integrated part again vanishes as t— oo and, making use of

Equation (15a), there then follows

PG dfO+) (155)

dr® dt

Equations (15a) and (15b) are special cases of (15). The general proof of (15)
follows by induction from the general result

-?’{ff(—‘)} — sz)[d"'lf(f)} _d*T(04)

} = s*f(5) — s f(0+) —

’

dr® de" 1 dim-1
d* (1) darf(t
if -Tn{g—) is continuous and ‘}C( ); is piecewise continuous, and if f(¢),
df(t drf(t
—%-) e e ey ‘}C ( )are all of exponential order. This result is obtained, as in

the special cases n = 1 and 2, by an integration by parts.
We thus obtain the following result:
Equation (15) is valid if f(t) and its first n — 1 derivatives are continuous over

every interval (0,T), zf f D,

is (at least) piecewise continuous over every interval

(0,7), and if f(1) and its ﬁrst n derivatives are of exponential order. These
conditions are satisfied by a great variety of functions of physical interest.

Example 2. If we take f(f) = sin at, then, from (13c),

a
fo=g5a
Equation (15a) then gives
a
.?{a Ccos at} = s(m) —sin0
or, using (14),
s
.?{COS at} = m .

In particular, for the class of functions considered, we see that if a function
and its first n — 1 derivatives vanish at t = 0 (or as t — 0+), the transform of
its nth derivative is obtained by multiplying the transform of the function by s™.
Applications of this fact are closely related to the use of the operational
a7y (1)

dt -

notation D"f(t) to represent
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Equation (16) is established by similar methods. Again making use of
integration by parts, and recalling that

d [} B
Etj;f(") du = f(1),

we obtain

,9,0{ J; ) du} ~ J; T {fot £(u) du} di
- [e_s fotf(u) dur+ ! f:)e"“f(r) dt

=i,
S

the integrated part vanishing at the upper limit (for sufficiently large values
of 5), since f(t), and hence f; f(u) du, is of exponential order. Thus, in general,

if a function is integrated over (0,1), the transform of the integral is obtained by
dividing the transform of the function by s.
If the lower limit differs from zero, the formula

t 1 1 (@
<z U f(u) du} = ;f(s) —3 f f(u) du 21
a 0
is easily established.
Equations (17) and (18) express the so-called translation properties of the
Laplace transform. The proof of the former property follows immediately

from the definition, since the transform of e® f(¢) is given by

J‘ooo e-—st[eatf(t)] df — J.oco e—(s—a)tf(t) df,

and the last expression differs from f(s) only in that s is replaced by s — a.
Thus, if a function is multiplied by e®, the transform of the result is obtained by
replacing s by s — a in the transform of the original function. It is seen that
if £(s) is plotted as a function of s, the representation of the transform of
e® f(1) is thus obtained by shifting or “translating’ the transform of f(¢)
through a units in the positive direction of s.

b

Example 3. If we take f(r) = sinbr, Equation (13c) gives f(s) = T

and (17) then gives
b
s —ap + b’

Flesin bt } = (

Suppose now that a function is defined to be g(¢) for 1 = 0 and to be zero
for negative values of r. Its transform may be denoted by g(s). If the given
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function is translated through a units in the positive direction of ¢, and so
becomes g(t — a) when ¢ = a and zero otherwise, Equation (18) states that the
transform of the translated function is obtained by multiplying the transform
of the original function by e=*°. To establish this property, we notice that since
the translated function vanishes when 0 < ¢ < g, its transform is defined by

the integral .
f e *tg(t — a)dt.

a

If t is replaced by ¢ + a, and the lower limit of the integral is changed accord-
ingly, this integral becomes

fo e (1) dt = 77 fo e " g(t) dt = e™* &(s),

in accordance with Equation (18).

Example 4. If (1) = sin (+ — 1) when t = t;, and f(¢) = 0 when t < t,, there
follows g(r) = sin ¢, and, from (13c), £(s) = (s® + 1)71. Thus Equation (18) gives
—3tg
st 417

To establish the property of Equation (19), we merely differentiate both
sides of the equation

*{f(n} =

fs) = f: e”* f(1) dt

n times with respect to s. Differentiation under the integral sign is valid for all
values of s for which the transform exists, as was stated at the end of Section
2.2,

Example 5. To find the transform of ¢*, Equation (19) states that we merely
differentiate the transform of unity n times with respect to s and multiply the result
by (—1)*. We thus obtain

dar {1 n!
) = -r 4 (5) - 7

where n is a positive integer or zero, with the usual convention that 0! = 1.

2.4. The inverse transform. In applications of Laplace transforms we
frequently encounter the inverse problem of determining a function which has
a given transform. The notation #-1{F(s)} is conventionally used for the
inverse Laplace transform of F(s); thatis, if F(s) = Z{f(¢)}, then we write also
f() = L~ F(s)}. The notation f(r) < F(s) is also frequently useful:

To determine the inverse transform of a given function F(s) it is thus
necessary to determine a function f(¢r) which satisfies the equation

[7 ety ar = Fes.

¢
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Since the unknown function f(¢) appears under an integral sign, an equation
of this type is called an integral equation.

In more advanced works it is proved that if this equation has a solution,
then that solution is unique. Thus, if one function having a given transform is
known, it is the only possible one. This result is known as Lerch’s theorem.

More precisely, Lerch’s theorem states that two functions having the
same transform cannot differ throughout any interval of positive length.
Thus, for example, Equation (13a) shows that the continuous solution of

fm et f(ndt = !
0 s

is f(f) = 1; thatis, £~ {s~1} = 1. However, it is clear that if we take f(r) to
be, say, zero at + = 1 and unity elsewhere, or otherwise redefine the func-
tion f(¢) at a finite number of points, the value of the integral is not
changed. Hence the new function is also a solution. Such artificialities are,
however, generally of no significance in applications.

Although the direct determination of inverse transforms involves methods
outside the scope of this chapter, * extensive tables of corresponding functions
and transforms are available in the literature, and their use (in conjunction
with the use of the properties listed in Section 2.3) is sufficient for many
purposes. A short table of this sort is presented on pages 74-76.

It should be pointed out that not all functions of s are transforms, but that
the class of such functions is greatly restricted by requirements of continuity
and satisfactory behavior as s — o00. A useful result in this connection is the
following: If f(¢) is piecewise continuous in every finite interval 0 < t < T and

is of exponential order, then f(s) — 0 as s — o0; furthermore s f(s) is bounded
as s — o0, The proof follows from the fact that in such cases

f(D] < Me®t and |e™ f(1)] < M e~

for some fixed constants s, and M. Hence we have

/()] =

f:e"‘f(t) dt| = J:oe'St Lf(D)] dt

= #]
< Moot gy

M

g L
S"_Sn

* See, however, Problems 87-94, Chapter 10.
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The theorem stated then follows from the fact that
0y

approaches zero and
§—So

. : B 1
M remains bounded as s — 00. Thus, such functions as I, ——, —=,
S — So s+ /s
and sin s cannot be transforms of functions satisfying the conditions stated.

df(t

It should also be noted that if f(¢) is continuous and -'%? is piecewise

df (¢
continuous in every finite interval 0 < t < T, and if f(t) and —J;L) are of

exponential order, then d
lim s f(s) = f(0+). (22)

§an

This result follows from the fact that in this case the preceding theorem states
that the left-hand side of Equation (15a) vanishes as s — oo. It is useful in

those cases when only the initial value of f(t) is required and the transform of
is known.

2.5. The convolution. It frequently happens that, although a given
function F(s) is not the transform of a known function, it can be expressed as
the product of two functions, each of which is the transform of a known
function. Thus, it may be possible to write

F(s) = () ().

where f(s) and g(s) are known to be the transforms of the functions f(#) and
g(#), respectively. We suppose that these functions satisfy the conditions of
page 55. In this case, Equation (20) states that the product f(s) &(s) is the

transform of the function defined by the integral J.; f(t — u) g(u) du. This

integral is called the convolution of fand g, and may be denoted by the abbrevia-
tion f'» g. It is indicated by the symmetry in fand g that fand g can be inter-
changed in the convolution, that is, that f* g = g » f. Before outlining the
proof of Equation (20), we illustrate its application.

Example 6. To determine ¥ 1 { } we refer to Equations (13a) and (13b)

s(s — a)
and write the given function of s in the form

= f(s) (s)

5§ —a

where f(1) = aand g(¢) = ¢*'. Equation (20) states that the product is the transform
of the function

[*g =ﬂae""du = e — 1,
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If the functions fand g are interchanged, there follows alternatively
¢ t
— (t—u) — pot —a U — t — p—Gty — t
g*f J.Oe“ adu = e J.oe adu = e*(l — e ) = ¢ 1,

as before. The same result is obtained without making use of the convolution, in this
case, if the product is first expanded by the method of partial fractions in the form

(s — a)! — 571, and use is then made of Equations (13a) and (13b).
q

Equation (20) can be obtained formally as follows. From the definition,
the right-hand side of (20) can be written in the form

s ([ esrae] [ s 0]
- J.om J.oao et f() g(u) dv du
- J.ouo gu) U(;lo e—S(ﬁu)f(U) dv, du

if different “dummy variables” of integration (v and u) are used in defining
the two transforms. If, in the inner integral

of the last form, we replace v by a new vari- u
able ¢ with the substitution
v=1—u, dv = dt, u=t <
there follows
Iom e—s(v+u)f(v) dv = J‘:O e'“f(t — u) dt, NN
and hence <
- X o ¥/
f& &) = |77 et — war) au :
Figure 2.1

Interchanging the order of integration in

the double integral and changing the limits as indicated in Figure 2.1, we
then obtain formally

)89 = |7, e — w) g(u) du)
= I e {16 = w g du} ar
= 2{[ 1 - u) glu) du

in accordance with Equation (20). The interchange of order of integration can

be shown to be legitimate, by using appropriate limiting processes, when f
and g satisfy the assumed conditions.

2.6. Singularity functions. Consider the function f(¢) which has the value
1/t, when 0 < ¢t < 1, and is zero elsewhere (Figure 2.2). We then have

f: f) dt = ; f@ydt = 1;



64 The Laplace transform [ chap. 2

that is, the area under the graph representing f(#) is unity. The transform of
this function is found to be
to __ p— sty
f et =1 "

() = |
2=+ | =

0

Now as t, — 0, the magnitude of f(r) over (0, #,) increases without limit, while,
at the same time, the length of the interval (0, #,) shrinks toward zero in such a

way that the integral J.:’ S () dt retains the value of unity.

) (0

&:

N

to t
Figure 2.2 Figure 2.3

In the limit we have the ideal case of a “function’ which is infinite at the
point ¢ = 0 and zero elsewhere, but which has the property that its integral
across t = 0 is unity. Making use of L’Hospital’s rule, we find

] _ e_Stn s e—sto
lim ————— = lim
to—0 an =0 S

= 1.

That is, the transform of f(t) approaches unity as ty — 0.
If ¢ represents time and f(¢) force, then J:" f(¥) dt represents the impulse of

the force f(#) acting over the time interval (0, #,). Hence, as 1, — 0, we may
speak loosely of a resulting “unit impulse” at ¢+ = 0, due to “an infinite force
acting over a zero time interval.” In view of this interpretation, the limiting
form of f(¢) is frequently called the unit impulse function. If we denote it by
o(t), we are led to write

Z{é(n} = 1. (23)

The *“function” é(¢) is also often called the Dirac delta function. If, for
example, ¢ represented distance along, say, the centerline of a beam and f(¥)
represented the intensity of a distributed /oad, then 6(¢) could be considered as
the formal representation of a concentrated unit load applied at the point t = 0,
and analogous interpretations in other fields are frequently useful.
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In a similar way, if f(¢) has the value —1/¢2 when 0 < ¢ < £, the value
—+1/t2 when t, < t < 2t,, and the value zero elsewhere (Figure 2.3), there
follows

[7¢—wswdi=[*¢—wswdi=1.

That is, the moment of the area under the graphical representation of f(¢),
about the point #,, is unity, whereas the (signed) area is zero. The transform

of f(¢) is
Z{f} = — ;;{

1 to 2to
[*etar—["al
0 to

0

= — Lz(l — e Sto)2,
st
Repeated use of L’Hospital's rule shows that, as 1, — 0, &{ f(f)} — —s. The
limiting form of f(¢), as t, — 0, is frequently referred to as the doublet function,
because of certain interpretations relating to electric field theory and fluid
flow. Denoting the negative of this limiting form by 46'(¢), we write

L@} = s. (24)

With the interpretation of ¢ as distance and f(¢) as load intensity, 6'(¢)
could be considered as the formal representation of a concentrated negative unit
moment applied at the point t = 0.

Such functions, often called singularity functions, are dealt with rigorously
in the branch of mathematics known as the theory of distributions, and are of
frequent use in physical applications. Although they do naqt conform to the
restrictions of page 55, and although, in fact, they are not true functions,
nevertheless if formal use of them leads to a result which is capable of physical
interpretation, then in practical cases the result may be accepted as correct.

If the singularity occurs at ¢ = #, rather than at ¢ = 0, we denote the
corresponding functions by é(r — #,) and é’(¢t — #;) and obtain (by limiting
processes analogous to those given above) the formal results

Ll — 1)} = eh,  LE — 1)} = s e, (25a,b)

It may be noticed that these results are also obtained by formally applying the
translation property (18) to Equations (23) and (24).

2.7. Use of table of transforms. A brief table of corresponding functions
and transforms is given on pages 74-76, in order to facilitate the determination
of both direct and inverse transforms. The first ten pairs represent general
relationships proved in Section 2.3. In pairs (T3,4,5) the conditions of page 55
are assumed, whereas in the remaining pairs the less restrictive conditions of
page 58 are implied.
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Pairs (T11-30) either have been established in examples or can be easily
obtained from established results by using certain of the general properties.
Only frequently occurring basic forms are listed; other forms are readily
deduced from those given. Pairs (T31-34) involve the singularity functions of
the preceding section.

Pair (T35) was derived in Example 5 when »n is a positive integer and
(T36,37) follow, in this case, by virtue of (T8) and (T3), respectively. The
formulas are valid also (under the given restrictions on n) if n is not an integer,
if (n — 1)! is interpreted in a way to be defined in Section 2.9.

Pairs (T38-41) are included principally for future reference. In these pairs
the functions J,, and 7, are certain functions known as Bessel functions of
order m. These functions are to be treated in Chapter 4. If, in these pairs, n is
zero or a positive integer, then the order of the function involved is half an
odd integer. In such cases the functions in brackets, in the right-hand column,
can be expressed in terms of products of polynomials and either circular or
hyperbolic functions. These expressions are given for m = —4, 4,..., 2 in
Table 2, page 77 (where x is written for at). The expressions for m = 41, 13,
and so on, can be obtained in terms of these expressions by use of the recur-
rence formulas listed at the foot of the table.

Although the transforms of the simpler functions of frequent occurrence
in practice can be obtained directly from the table, or by direct integration,
the determination of inverse transforms may frequently involve a certain
amount of manipulation. In this connection, it should be observed that if n
is a positive integer, all functions of t appearing in these tables (except the
singularity functions), as well as all their derivatives, are continuous everywhere
and are of exponential order. Hence it follows that if n is a positive integer, all
properties (T1-10) can be applied to all succeeding pairs in the table, except for
(T31-34).

Pair (T3) is particularly useful in the determination of inverse transforms,
when f(0) = 0. Reference to Equation (22) shows that this is so if s f(s) tends
to zero as s — c0. Hence it follows that if lim sf(s) = 0, then

3—
L Usf(s)} = 4. (26)
dt
2
Example 7. To determine &1 {(sst@z}’ we first obtain from (T19) the result
1
w1 {(32+4)2} =2 t sin 2t. Hence, using Equation (26),

52 d {1 . 1 . t
¥l m =FI Ztsm2t =ZSll12t+§C082t-

When a given function F(s), whose inverse transform is required, is the



sec, 2.7 | Use of table of transforms 67

ratio of two polynomials in s, the method of partial fractions can be used to
express F(s) as the sum of a number of terms whose inverse transforms can be
determined from the table. In such cases, if the inverse transform does not
involve the singularity functions of Section 2.6, the degree of the denominator
must be greater than that of the numerator. In particular, if

F(s) = NO)
D(s)
where D(s) is a polynomial of degree n with n distinct real zeross = ay, 4, . . .,

a,, and N(s) is a polynomial of degree n — 1 or less, there follows (see
Problem 15)

N(S) _ N(al) 1 N(ag) 1 _]_ L. + N(a,,) 1
D(s) D'(a))s—a; D'(ay)s— a, D'(a,)s — a,
_ % N(a,) 1
m=1 D’(am) S — a,
and hence, from (T12),
-1 {ﬂ(s_)} — N Mﬂm_) emt. 27N
D(s)) < D'(an)

If certain of the zeros of D(s) are repeated or complex, recourse may be had to
conventional methods of expansion in partial fractions.

2+ 1
4 3s% + 25
N(s) = s + 1, D(s) = 52 + 352 + 25 = s(s + 1)(s + 2).

Example 8. To determine #1 { }, we write

With a; = 0, a, = —1, a3 = —2, there follows
N(ay) = 1, D'(ay) =2,
N(a) =2, Dia) = —1,
N(ag) =5, D'(ay) = 2,

and Equation (27) gives

52+ 1 1 5

o _ 9t 4 2 2t
B3t 3 2€ tre

g

1
G+ D241

Example 9. To determine #~! : }, we first assume an expansion

of the form
1 A Bs + C

GIDELD s+l F+1°
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After clearing fractions, we require the equation to be an identity and obtain
A= —B=C =1 Hence

1 11 1 5
GrDE+D 2571 TFx1 E+1

and the use of (T12,15,16) gives the inverse transform 3(e™* + sin t — cos #).

The usefulness of (T25,26) in determining inverse transforms should not be
overlooked.

s

Example 10. To determine £ 1 { Z+4s+ 5

}, we first write

s B s _(s+2)—2
s +4s+5 (G+DV2H+1 (s+22+ 1

Pairs (T25,26) then give the required inverse transform
e 2 (cost — 2sin ).

2.8. Applications to linear differential equations with constant coefficients.

It follows from the property (T5) and its special cases (T3,4) that any ordinary
linear differential equation with

constant coefficients, with prescribed

initial conditions at t =0, can be

transformed immediately to a /inear

k algebraic equation determining the

10 transform of the required solution,
provided that the right-hand member

X of the equation has a transform. The
solution then is to be obtained as the
Figure 2.4 inverse of the transform so deter-

mined.

If the right-hand member is of exponential order, the same will be true of
the solution and of those derivatives whose transforms are involved, and all
the relations of Table 1 are appropriate.

We take as a simple example the case of forced vibration of a mass m
attached to a spring with spring constant k. (That is, the force exerted on the
free end of the spring is assumed to be proportional to its displacement x from
the position of equilibrium, the constant of proportionality being k.) If the
applied force is f(f) and if no damping is present (Figure 2.4), the differential
equation of motion is

d®x
m‘;é- + k x = f(1). (28)
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Furthermore, if the mass is assumed to be at rest at equilibrium when ¢ = 0,
the initial conditions

x(0) = 4x(©0) =0 (29)
dt
u atisfied. Denoting the transforms of x y % (),
respectively, the transform of Equation (28) becomes merely
mstx +kx=f
Thus, if we write
=X, (30)
m
the transform of the required solution is
g=1_t G1)
m st 4+ wd
: | S In wel . . .
Since ——— Is the transform of 510 ©o , this product can be considered as
5° + wg Wy
sin wqt
the product of the transforms of and f(f), and hence use of the con-
W
volution (T10) gives the solution
£
X = 1 S(u) sin wy(t — u) du, (32)

mawg Jo

in terms of an arbitrary force function f(¢).

However, in place of specializing this general form, it is generally more
convenient in specific cases to derive the required solution directly from
Equation (31). We consider several cases of interest.

(1) Suppose that an instantaneous impulse of magnitude 7 is applied just
after the time ¢ = 0. Then f(¢) = I - 8(t) and f(s) = I- 1 = I. Hence we have

__ I 1
F=—
ms®+

x=-L sinwgt (1> 0) (33)
mw,

2 ?
0
Thus the motion in this case is a sinusoidal vibration of amplitude I/mw, and
angular frequency w,, following the application of the impulse; w, is known
as the natural frequency of the system. It should be noticed that here the initial
dx(0)
dt
vanish when the impulse is applied, since the momentum mv = I must be
imparted by the impulse, in accordance with Newton’s laws of motion. Here

condition = 0 is apparently not fulfilled. However, the velocity cannot

X P
we may suppose that x and v = = are zero throughout an infinitesimal
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interval following the time ¢ = 0, and that on the subsequent application of
the impulse the velocity abruptly takes on the value I/m and a sinusoidal
motion ensues. Interpretations of this general nature are frequently necessary
in dealing with the idealized “singularity functions.”

(2) If a sinusoidal force f(f) = A sin wt is applied, there follows

Aw |
m (s* + wd)(s® 4+ o®) ’
or, expanding in terms of partial fractions,

X =

_ Ao [ 1 1
X = N 2 2 2|
m(w? — wPls® + v s+ o
Aw sin wyt  sin wt
Hence X = - o — jl
m(w® — )l w, w
= A i t 1 34
or X = 5. [@sin wyt — @, sin of]. (34)

mwy(w?® — wg)

Thus, if w = w,, the motion is compounded of two modes of vibration, one
(the natural mode) at the natural frequency w,, and the other (the forced mode)
at the frequency of the imposed force. In case the system is excited at its
natural frequency (w = w,), the motion can be determined by considering the
limiting form of Equation (34) as w — w,, or, more easily, by noticing that in
this case

Aw, 1

m (s* + wl)? .

X =

Hence we obtain, from (T21),

X = (sin wgt — wyt COS wyt). (35)

2
2mawy;

Thus the last term of Equation (35) shows that when the exciting frequency
equals the natural frequency, the amplitude of the oscillations increases in-
definitely with time. This is the case of resonance.

Similarly, if f(#) = A cos wyt, there follows

X = t sin wgl.
meo
(3) If a constant force f(#) = A is applied when ¢ > 0, there follows
A 1

F="—
m s(s® + mf)

A s
molls '+ of
and hence, from (T11,16),

x =~ (1 — cos ) (36)
0
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Thus, in this case, the mass oscillates with its natural frequency between the

. 2‘1 2‘1 . .

. A
force acts when ¢ > 1, there follows / = — (I — e ¥), and hence
s

. ﬁ 1 — e—sto _ ﬁ[ 1 B e—-qto :I
o oms(s8P 0l mis(s® 4 o) s(s 4 )]

The inverse transform of the first term is given by Equation (36) and, in view
of (T9), the inverse of the second term is zero when ¢ < 1, and is obtained by
replacing ¢ by + — £y in (36) when ¢ > t,. Hence we have, when 0 < t < {,,

A > (1 — cos wyt); (37a)
mwu

X =

and, when t > t,,

X = A2 {(1 — cos wyt) — [1 — cos wyt — 1,)]}
maw?

= ;—: [cos wy(t — 1) — cos w,yt]

2,4(. 1 ) . ( 1 )
= ——{sin—myly}) sin o, |t —-1,). 37b)
2 2 0'0 1y 20 (

Thus, while the force acts (0 < ¢ < ), the mass oscillates at its natural
frequency, with amplitude A/k, about the point x == A/k; however, after the
force 1s removed (¢ > 1)), the mass oscillates about the point of equilibrium

24
(x = 0), at the same frequency, but with an amplitude — sin 5(1)010. If

k
2
ty = i T, where T is the period of the natural mode of vibration, then
(ty

x = O when t = 1, so that the mass returns to its equilibrium position as the
force is removed, and then remains at that position.

It is seen that in the preceding example, and in similar cases, the use of
tables permits the determination of the transform of the solution by purely
algebraical methods. This is true, however. only in cases when the coefficients
of the linear differential equation are constants, and the usefulness of the
present methods is mainly restricted, in such applications, to such cases

The use of Laplace transforms is particularly advantageous in the solution
of initial-value problems associated with sets of simultaneous linearequations.
We illustrate the procedure by considering an example.
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We require the solution of the simultaneous equations

ax 4
dt 38)
. 3
d—y +Xx =sint
dt
which satisfies the conditions
x(0) =1, y(0) =0. (39
The transforms of (38) satisfying (39) are
SX—y= L + 1
s—1
1
X+sy=
Y s+ 1
from which we obtain, algebraically,
- s S 1
x = ,
(s — D(s* + 1)+s2+ 1 +(32+1)2
- 1 1 s
y =

— — + .

s—DE+1) $$+1 0 (554 1)
If the first terms on the right-hand sides of these equations are expanded in
partial fractions, there follows

S 101 1 s 2 ] 1
x_2.s—1+82+1+52+1+(52+1)2

1[ 1 1 2 > (40)
- __ 1 _ A S
| R s2+1+52+1+(52+1)2],

and reference to Table 1 gives the required solution,

x = 3}e' + 2sint + cost — tcost)
. (41)

y = }(—e* —sin t + cos t + ¢ sin ¢)

To illustrate the existence of exceptional cases which may arise in connec-
tion with simultaneous differential equations, we next attempt to find a
solution of the equations

dx ]
at ’ (42)
*
d®x dy iy
dr2+ dt+y_e J
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satisfying the conditions

x(0) =1, x'(0)=0, y0)=0. (43)
The transformed equations are
sx+y=1,
s?% + (s + 1)}7=s+—11
s [—
from which there follow
2 1 1
X=-— , p = : 44
s s—1 ’ s—1 49
The inverse transforms of these expressions are then
x=2—¢ y = ¢ (45)

However, these solutions do not satisfy the last two of the prescribed initial
conditions (43). It is readily shown, by methods of Chapter 1, that the most
general solution of (42) is of the form

x=C—e¢, y=¢ée

where C is an arbitrary constant. Hence only the initial value of x is arbitrary,
and the problem as stated does not possess a solution.

This example shows that, in the case of simultaneous equations, although
the method of Laplace transforms will yield the correct solution if it exists, it
may also supply an erroneous solution (which fails to satisfy certain prescribed
initial conditions) if no true solution exists. Thus, in doubtful cases, the satis-
faction of initial conditions should be checked.

2.9. The Gamma function. In calculating the transform of ¢, where
n > —1 but nis not necessarily an integer, we encounter a function, known as
the Gamma function, which also occurs frequently in many other applications.
In this section we investigate certain properties of this function.

If, in the integral defining the transform of ¢*,

2 =[Terda (n> 1),

we introduce a new variable of integration by setting st = x, there follows*

Z{t"} =

fm e * x"dx (n > —1). (46)
0

sn+1

The integral appearing in Equation (46) depends only upon n. Although it
cannot be expressed in terms of elementary functions of n, the same integral

* The restriction n > —1 is necessary to ensure the convergence of the integral. If
n = —1, the function ™ does not have a Laplace transform, as here defined.
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with n (inconveniently) replaced by #» — 1 is a tabulated function which occurs
frequently in practice and is known as the Gamma function of n, written I'(n):

M) = ["e™*x*dx  (n>0). @7)
With thi ion, Equation (46) ] , 0 the f
L {1} = F(%—nj‘li) (n> —1). (48)
A comparison of Equation (48) with the result of Example 5, Section 2.4,
shows that
I'(n+1)=n! (49)
if n is a positive integer, and that
') =0!=1. (50)

Thus it is seen that, if » > —1, I'(n + 1) is a continuous function of n which

takes on the value n! when n is a positive integer or zero. For this reason, the

Gamma function is often referred to as the generalized factorial function.
Making use of an integration by parts, we obtain the result

+ f zx""ldx
=n f:) e *x" ldx (n>0),
from which there follows
I'(n+ 1) = nT(n) (n > 0). (51)
Inductive reasoning then leads to the formula
'n+N)=n+N—-—1Dn+N—=2)-+(m+ Dnl(n (n>0), (52

where N is any positive integer. Also, if # is replaced by n — 1, Equation (51)
can be written in the alternative form

['(n)

I'(n — 1) = (n > 1). (53)

Values of I'(n), or of log,, I'(n), are commonly tabulated for the interval
1 < n £ 2.* Equation (52) can then be used to evaluate the Gamma function
for arguments greater than 2, since any such argument differs from a value in
the tabulated range by some positive integer N. If we write x =n 4 N and
replace n by x,, where 1 £ x; < 2, Equation (52) becomes

T(x) = (x — 1)}(x — 2) -+ (xp + 1)xp T'(xp)
(x>2, 1<x<2). (54

* A table of values of the Gamma function itself, in this interval, is presented in the
Appendix.
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Also, Equation (53) serves to determine values of the Gamma function for
arguments between zero and unity.

For negative values of n, the function I'(#) is not defined by Equation (47),
since the integral does not exist. However, it is conventional to extend the
definition in such cases by requiring that the recurrence formula (51) hold also

for negative values of n. A different method of definition yields I'(n) for all
complex values of n except for zero and negative integers, at which points I'(n)
does not remain finite. Since, for any negative value of n which is not an
integer, there exists a positive integer N such that n 4 N is in the tabulated
range (1 < n 4+ N < 2), we may then replace n + N by x, and n by x in (52),
where 1 < x, < 2, to obtain

D(xg) = (xg — D(xg —2) -+ (x + Dx['(x)

or, solving for I'(x),
I(x) = I'(xo)
x(x 4+ 1)x + 2) (x5 — 2)(xy — 1)
(x <1, 1 <x5<?2) (55)

Equations (54) and (55) thus serve to determine values of the Gamma
function for real arguments outside the tabulated range. It should be noticed,
however, that since the denominator of Equation (55) vanishes when x is zero
or a negative integer, the Gamma function is not defined for these values, and
becomes infinite as these values are approached (see Figure 2.5).

It will be convenient in later work to use the notation n! even in cases when n
is not a positive integer or zero, with the convention that in such cases n! is
defined by I'(n + 1).

The value of I'(3) is of particular interest. A well-known but quite indirect
method of determining this value is now presented. From the definition (47),
we have

') = j: e Fz 12z,

With the change in variables z = x2, this integral becomes

It =2 |7 e dx. (56)
If the right-hand side of Equation (56) is multiplied by itself, and if the variable

of integration is replaced by y in one factor, there follows
‘o L2 w .2 E U N N Y
[T = 4([" e ax)([ e ay) = 4 [7 [7 e axay,
This double integral represents the volume under the surface z = e~**++" in
the first quadrant (x =z 0, y = 0). Changing to polar coordinates, we obtain

()] =" e rafo=az ]

x
= 7.
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Thus, finally,
I} =Vn. (57)

From Equation (56) we also have the useful result

[Cear=yva. (58)
We include without proof the formula

w

I'oe)I'a — x) =

(39)

. ]
SI wx

which can be shown to be valid for nonintegral values of x and which is of
some use in applications of the Gamma function.

I'(n)

ol 1

—_——_— — — — —— — —_—_—_

Figure 2.5
It can be shown that the Gamma function is defined alternatively by the
limit

I'(x) = lim ! n”.
n—o X(x 4+ 1)-(x 4+ n)
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Hence there follows also
' @
lim daRL =1
n-+ o I‘(x + n 4+ 1)

Thus in limiting operations involving Gamma functions, when n — <o, the

(60)

expression I'(x + n + I) can be replaced by its approximation n!n®. We
indicate this fact by the notation

m+x)!'=T(x+n+4+1~nln* (n — o0), (61)

where the symbol ~ is to be interpreted as indicating that (61) implies (60).
A further limit of some interest is of the form

lim — ¢+ 1)
n— o \/217_ n-n+(1l2) e~ "
which we can write symbolically
n=Twn+D~V2rpt1Pen  (n— o). (63)

If n is a positive integer, this approximation is known as the Stirling formula
for the factorial.

Proof of these relations is beyond the scope of this chapter.

=1 (62)
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PROBLEMS
Section 2.1

1. (a) Obtain the solution of the equation

d
for which »(0) = y,, by the method of Section 2.1. Assume that « # a.

(b) Verify the solution so obtained.
2. (a) Obtain the solution of the equation

for which y(0) = y,, by considering the limit of the solution of Problem 1 as
o—d.

(b) Verify the solution so obtained.

Section 2.2

3. Find the Laplace transform of each of the following functions, by direct
integration:

(a) et cos kt, (b) 1 %! (n a positive integer),
sin ¢ OD<t<n) 0 0 <t <a
© {o ¢t > ), @41 (@<t<b)
0 (>d).
Section 2.3

4. Find the Laplace transform of each of the following functions:

(a) £, (b) 2 e3¢, (¢) cos at sinh at,
(d) ¢etsin2t, (e) #sinat, (f) €% cosh by,
5. Find the Laplace transform of each of the following functions:

d* (1)

@ 22, (b) 1 £(),
N N

©) Z a,t®, (d) a, cos nt.

n=0 12)

6. The Laguerre polynomial of degree n is defined by the equation

d-n
Ly =éet T (" eh).

Prove that

oy -5 ()"

s
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7. Prove that if /(s) = £ {f(9)}, and if @ > 0, then also

@ < @) - 5/(3). ® #a) =5 ()

8. Let f() = F(©) when 0 <t <a, and let f(f) be periodic, of period a, so

that f(z + a) = f(r). By writing

2wy = [Jestfar+ [Cen payar + [0t pydr + -

and transforming each integral in such a way that in each case the range of
integration is (0,a), show that

Z{f(O} = j: et F()di[l + e 4+ e~ 4 -- -],
and hence, when s > 0,
_[: et F(2) dt

1 — e

Z{f(0} =

9. Apply the result of Problem 8 to the *“‘square-wave function” for which

a a
F(t) =1when0 <t < 5 and F() = —1 when 3 < t < a. Show that the transform
of this function is
a - e—aslz)z [1 — e—98/2 1 as
= - tanh —.

(1 —e)  s1+e 2 4
t
10. Show that if f(¢) is the “square-wave function” of Problem 9, then fo f(u) du
is a “triangular-wave function.” Sketch it and give the expression for its transform.

11. (a) Show that, if f(s) = % { f(n)}, and if an interchange of order of integra-

tions is valid, then
f fWdv =% {f—(tg}

[The result is valid, for s sufficiently large, whenever f(#)/t has a transform.]
(b) Use this result to deduce the transforms

sin ¢ 1 —et 5
L {— =cotls, & = log .
t t s+ 1

12. (a) By formally setting s = 0 in the result of Problem 11(a), obtain the

formula
f f(s) ds =I th) t.
0 0

t

[{The result is valid when the integral on the right exists.)
(b) Use the result of part (a) to obtain the evaluations
@ sin ¢

A

3

o e—-at _ e—bt b
f ~—————dr=log- (ab > 0).
0 t a



84 The Laplace transform | chap. 2

(c) Show that if f(¢) = €%, then neither side of the relation of part (a)
exists, whereas if f(f) = e’ sin ¢, then the left-hand member exists but the right-hand
member does not.

13. By applying the property of Equation (16) to the result of Problem 11,

obtain the formula
¢ N\ 1 o
&z { A du} = - f f () dv.
o U § Je

Also, assuming that the result of Problem 12 also applies, obtain the formula

L7 { J"”f(_u) du} = 1 f?'(v) dv.
t U sJo

[In each case, the given formula is valid, for s sufficiently large, whenever the left-

hand member exists. The integral Jow f(®)]t dt need not exist.]
14. Assuming the results of Problem 13, show that
1

1 1
& {Si(H)} = ;cot‘l 5, Z {Ci(H)} = ;log m ’

1
s+1°

1
and £ {Ei(—D} = p log

where

. tsin u ] ® cos u . © g%
Si() =} —du, Cit) = du, Ei(—1) = — du.
o H ¢ u t U

Section 2.4

N(s
15. Let -DE__.S"_; denote the ratio of two polynomials, with no common factors,

such that the degree n of D(s) is greater than that of N(s), and suppose that D(s)
has n distinct real zeros s = a,, @y, ..., a,. Show that the coefficients in the
partial-fraction expansion

N(S)= AI + Ao 4o+ An Z Am
D) s—a s—ay s —a,

are determined by the equations

NG) My,
A, = lim (s — a,) Dg; - D,((‘; ))

Hence show that in this case

16. If £ { f(1)} = f(s) and if
f(t)=A0+A1t+A2t2+"'+Antn+"‘
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(in some interval about # = 0) and

BO
h)

B, B, B,
+s—2-|-——-|-"'—|-s—m_|_—1

f(s) = 3

(for sufficiently large values of s), show that

B,
A, = s
. . . . -Bn+1 . »
17. By using the ratio test, show that if lim B = §,, the second series in
n—oc n A
Problem 16 converges when s > 5,. Deduce that in this case lim ;H =0, so
n—-oo n

that the first series in Problem 16 then converges for all values of t.

18. Use the results of Problems 16 and 17 to find the inverse transform of each
of the following functions as a power series in ¢:

1 _ 1/s
VET1 VI+ R
19. Verify Equation (22) in each of the following cases:

|
(a) sin > (b)

(a) f(r) = cos at, (b) f(#) = sinh at,
s 2s + 1
(c)f(s)=sz_a29 (d)f(s)'—“m.

20. By starting with Equation (15a) and considering the limiting form as
s — 0, obtain the relation

lim 5/(s) = f(0) + lim [ "e~*t ()

8—0 80
and, by formally taking the limit on the right under the integral sign, obtain the
result
lim s/(s) = f()
&§—0
where f() = lim f(¢). [Compare Equation (22). The result is valid when the in-
i—w©

tegral J?f’(r) dt exists. In particular, lim f(¢) must exist.]

{— o0

21. (a) Show that the result of Problem 20 is not valid, in particular, in the
cases for which f(s) is given by

1 1 1
s—1’ sf+1° s(s* —3s+2)°

(b) Show that the result of Problem 20 is valid, in particular, in the cases
for which f(s) is given by

1 1 1
s’ s+ 1’ s(s>+35s+2)°
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[The result of Problem 20 occasionally is stated without qualifying restrictions.
The above examples show that some care should be taken in applying it. In practical
situations, it can be used if the existence of lim f(¢) is assured, from physical
considerations or otherwise.] t=eo

——— Section 2.5

22. Determine the convolution of each of the following pairs of functions:

(a) 1, sin at; (b) ¢, et
(c) e, e; (d) sin at, sin bt.

23. Verify Equation (20) in each of the cases considered in Problem 22.

24. Suppose that y(z) satisfies the integral equation

Y0 = Ft) + [ Gl ~ ) ye) d,

where F(r) and G(7) are known functions, with Laplace transforms F(s) and G(s),
respectively.

(a) Show that then

_ F(s) G(s)
W(s) = T—Go) F(s) + T—¢o)

(b) Deduce that the solution of the integral equation is

t
¥ty = F@) + fo H(t — u) F(u) du,
where H(r) is the function whose transform is given by

G(s)

2 = 5.

(c) Illustrate this result in the special case when G(r) = e~

25. (a) Show that s f(s) is the transform of the function

1 t
— — — nn1
F(1) Fr— J; (¢t — w7 f(u) du,
when 7 is a positive integer.
(b) Deduce that

n times n times

4 t 1 !
e “ e _— — -l :
J; J;f(r) dt dt = ])!L (¢t — W) f(u) du
Section 2.6

26. (a) Show that
[ o —ryfepde =fay it a <t <b,
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if the integral is defined as the limit (as ¢ — 0) of the integral in which é(u — ;) is
replaced by a function equal to 1/(2¢) when t; — ¢ < u < t; + € and equal to zero
elsewhere.

(b) In a similar way, obtain the relation

b
L S =ty fayda = =<ty if a<t, <b.
(c) Show that the convolution of é(t — ¢;) and f(¢) is given b
g y
J'z o — 1) f(¢ — uy 0 (t <t)
u— —wdu =
0 . fit—t) @ >

27. (a) If the Heaviside unit step function H(f) is defined such that H(¢) =1
when ¢ > 0 and H(f) = 0 when ¢ < 0, show that

—sty

ba | =

L{HO} =~ L{H( - 1)} =

when ¢, = 0.

(b) Noticing that & {6°(r)} = s & {6(1)} = s* # {H(¢)}, indicate a sense in
which, correspondingly, we may be led to think of 6°(¢) as a formal derivative of
o(1), and of 4(¢) as a formal derivative of H(¢).

Section 2.7

28. Find the inverse Laplace transform of each of the following functions:

1 b s s+ 1
® 5T ® s O

2s + 1 1 e®
®) sGs+ s +2)° © 2+ 1)’ O

29. Find the inverse Laplace transform of each of the following functions:

52 b 52 3s + 1
@) (s% + a?)?’ (b) (2 — a?)?’ © G+ D +20s+3)°
4 1 1 —¢* 1
Dera © = OeErac+o

30. Find the inverse Laplace transform of each of the following functions:

s+ 1 52 e
®Frmay ® O
52 1

(d

) (s + a)®’ © (s + ¥’ ) (2 — 18
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Section 2.8

31. Solve the following problems by the use of Laplace transforms:

d
@ 2 +ky =0,  H0) =1

d
® 2 +ky =1, 0 =o.

dy
(c) ar + ky = o(t — 1), y(0) = 1.

d
@ =2+ ky = £, YO = o

32. Solve the following problems by the use of Laplace transforms:

(a)——-+2%+2y=0, ¥0) =1, ‘%(?—)=—1.

(b) dt2+2%+2y=2, w0) =0, %to)=l.
()W+2%+2y=a(z—1), H0) = 1, j"—0;(70)=—1.
(d)~—+23—f+2y=f(r), ¥O) = Yo» ‘m—yo

33. Solve the following problems by the use of Laplace transforms:

dty dy0)  d*(0 d3(0
@ —3 +4y—0 0) = ):1(:)= j;g)=o, 31;(3)=1.
diy dy0)  d(0)  d*)0)

(b) + 4y =4, y(0) = =0.

dt — d® T de
34. Use Laplace transforms to solve the problem

d%y
Sty =94t—a, y0) =0, yb) =0,

dy(0)

where 0 < a < b, by first writing = ¢, and finally determining c so that the

condition y(b) = 0 is satisfied by the inverse transform.

35. In Figure 2.6 a mass m is connected to an elastic spring with spring constant
k, and to a dashpot which resists motion of the mass with a force numerically
equal to ¢ times the velocity of motion. The applied external force is indicated by
f(#) and the displacement of the mass from equilibrium position by x.
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(a) Show that the differential equation of motion can be put into the form

d®x dx 1
Etg + @+ x=—f0
with the abbreviations
m 0 c - [
T-9% ®=5. F=Vog-o

(b) Assuming that the mass starts from rest at its equilibrium position and
is acted on by a uniform force f,, find
the resulting motion. Consider separately

the cases when f§ is real and positive, § = 0, 2
and B = iy, where y is real. Discuss the ZJ B
three cases and sketch typical curves 2_,\/\/\,_ m e
representing the displacement as a function % . f(®)
of time. 7 1y

(c) Assuming that the mass starts é ¢ X

from rest at the position x = @ and that no
external force acts, investigate the resulting

) Figure 2.6
motion as in part (b).

36. (a) Use the method of Laplace transforms to obtain the solution of the
simultaneous equations

(dx dy .
at A T

P,

& 2 ki —o0
& Tt T TS

which satisfies the initial conditions

x0) = -1, ¥0) =
(b) Solve the same problem by one of the methods of Chapter 1.

37. Establish the relation

dn dr
-?{ d:{] = (=D 5 57 — s77p(0) — - -+ =y D).

(Notice that by use of this relation a linear differential equation in y with polynomial
coefficients can be transformed into a new linear differential equation in the
transform y, which mayin certain cases be more tractable than the original equation.
In particular, if the coefficients are linear functions of ¢, the transformed equation is
of first order.)

Section 2.9
38. Use tables (when necessary) to evaluate the following:
(a) fowe—x Vx dx, (b) T(2.7), (© T(~1.3),
(d) (1.6}, (e (-1.3)}, ) I'@).
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39. By making the indicated substitutions, transform the integral
[>4]
T'(n) = fo et 1 df

to the following equivalent forms:

7 "1 1\ n—1

).

=

(a) T(n) = (Joﬁlog ;) dx (t = log

(b) T(n) = 2f e ldr (1 = 1.
0

40. (a) Obtain from Stirling’s formula (63) the relation
logion! ~ (n + %) log,o n — 0.4342945n + 0.39909  (n — )

for use in numerical computation.
(b) Show that use of this formula gives the approximations

10! =~ 3.599 x 108, 100! &~ 9.325 x 10357,

(The true values, to four figures, are 3.629 x 10%and 9.333 x 1057, It can be shown,
more generally, that Stirling’s formula for n! is accurate to within 1 per cent when
n > 10 and within 0.1 per cent when » > 100.)

41. Investigate the following limits:

. n!
@ I T e T e+ T
(b) lim (2m)!

noow 22tnl(n — H!

42. Starting with the relation

Ix+n+1
To 7 1) =(x +x+2)- - (x +n)
for any positive integer n, obtain the result
d I'(x + n + 1)
—1log T’ -
dxlog x+n+1) T rnt D)
I'x + 1) 1 1 1

T+ D T Txx 247 " FTarx

(b) If we write ¥ (z) = I''(z + 1)/T'(z + 1), and set x = 0 in the result of

part (a), show that there follows
1

1 1
¥(n) = ¥(0) + 1 +§+§ +"'+’-'.
[The function ¥'(z) is often called the Digamma function. It takes on the value
¥(0) = —y, where y = 0.5772157 .. . is a number known as Euler’s constant.)



Problems 91

43. The Beta function of p and q is defined by the integral

Bp.g) = [, 721 — o dt (pg > 0).

By writing ¢ = sin® 0, obtain the equivalent form

B(p,q) =2 J.;iz sin??10 cos® 1040 (p,g > 0).

44. Make use of the results of Problems 39(b) and 43 to verify the following
development:

Blpp I'(p +q) =4 f:e"’z r2r+t20-1 4y f;’z sin®?—1 9 cos22—1 g 46
—4 fo‘” fo""e—(m"ﬂ”) Y21 x%1 gy dy
=T(p) g (pg>0).
_ I

T T(p +9q)

45. By writing ¢ = x/(x + a) in the definition of the Beta function, and using
the result of Problem 44, obtain the result

© xrlde TP ()
& s =

46. Use the results of preceding problems to verify the following evaluations:

R i _ F(P)
- - = Vg —
(@) L ke B(p, 2) o+p P>

Hence show that

B(p.,9) (p,g > 0).

(p.g.a > 0).

I n+1
/2 /2 Vo ) N
] = n = > —1),
(b) J; sin™ 9 d6 J; cos™ 6 do 5 N (n n 2) (n
2

|
1_ - rf-
1 dr 1 (153 'ds V= (n)
© NV e

—_— = - — = > 0),
V1 nJovli—5s n (1 l) (= >0)
'f-+ =
n 2
O P A i<c<l)
().,0 a +x?2 d -0 +c)_sin1rc (= ¢ ’
1
© f*  dx 1 ms;_lds_ nln > 1
) T+x n), 1+s sin(n) n >,
/2 w2
® | tanmode = ——— 0 <n <)

V0 COs (H‘ITIZ)
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47. Verify the relationship

‘\/1—1' I‘(P)
22-1T(p + 3)
by making use of the substitution ¢ = 4(1 — cos 6).

1/2
B(p,p) =2, [ — Pt =

48. By comparing the result of Problem 47 with the expression for B(p,p) which
follows from the result of Problem 44, deduce the duplication formula for the

Gamma function:
221)-1

Vr

Also show that this result can be written in the form

r'2p) =

T(p) T'(p + %).

2n

(2n)! =-f/—_n!(n —P!.

49. (a) By writing x = u/t in the definition

1
B(m,n) = jo xm (1 — )1 d,
show that
B(m,n) rmin-1 = J: u™1(t — wy1du.

(b) By noticing that the right-hand member is the convolution of ™~ and
"1, deduce that
I'(m+n)  I'(m) I'(n)

and so obtain a simple derivation of the result of Problem 44.



CHAPTER 3

Numerical Methods for Solving
Ordinary Differential Equations

3.1. Introduction. In this chapter there are presented certain methods of
numerically calculating particular solutions of ordinary differential equations
which cannot be readily solved analytically. The methods given are, in general,
step-by-step methods and are described initially for first-order equations; how-
ever, the extension of these methods to the solution of higher-order equations
is also indicated.

Before considering these procedures, we outline a graphical method of
solving first-order differential equations which is of some practical interest.
If such a differential equation is solved for the derivative of the unknown
function, the result consists of one or more relations of the form

% = F(x,) 0

where it may be assumed that the function F(x,y) is a single-valued function
of x and y. Such an equation states that at any point (x,y) for which F(x,y) is
defined, the slope of any integral curve passing through that point is given by
F(x,). If we plot the family of so-called isocline curves, defined by the equation

Fxy)=C @)

for a series of values of the constant C, it then follows that all integral curves

of (1) intersect a particular curve of the family (2) with the same slope angle ¢,

where tan g is given by the value of C specifying the isocline. Thus, if on each

isocline a series of short parallel segments having the required slope is drawn,

an infinite number of integral curves can be sketched by starting in each case

at a given point on one isocline and sketching a curve passing through that
93
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point with the indicated slope and crossing the successive isoclines with the
slopes associated with them. This method can always be used to determine
graphically the particular solution of (1) which passes through a prescribed

point (xo,0), when the function F(x,y) is
y single-valued and continuous. The pro-

cedure is illustrated in Figure 3.1.

PN
Qo]
&l

C=173

3.2. Use of Taylor series. Suppose that

the solution of (1) which passes through

the point (xg,y,) is required. Knowing

Solution the value of y at x = x,, we attempt,

by a step-by-step method, to calculate

successively approximate values of y at
the points

Xy = Xo + A, Xy = Xo + 2h,

Figure 3.1 caey X, = X, + kh,

where £ is a suitably chosen spacing along

the x axis. For this purpose we now suppose that the value of y has been

determined at x = x;, and denote this value by y,; that is, we write
Ve = ¥(xx). We then make use of the Taylor series representation in the form

! h "’ hz
y(x—l—h)=y(x)—|—y(x)1—'+y(x)§—|—---,
and, setting x = x;, we obtain the formula

2

h . h
yk+1=yk+y;cﬁ+yki+'.' (3)

for calculating the value of y,,. Primes are used to denote differentiation with
respect to x. Since y’ is given by (1) in terms of x and y, the coefficients in (3)
can be determined from (1) by successive differentiation. Thus we obtain

y’=F(x7y)’ ylrc=F(xk’yk)
«_OF  OFdy v OF(xpy) | OF(x,y0)
y= ox dydx’ Vi ox + ay Ve

and so forth, for the higher derivatives. Since y, is given, Equation (3) can be
used to determine first y,, with & = 0, then y, with £k = 1, and so on, the
number of terms being retained in (3) at each step depending upon the spacing
and upon the accuracy desired. Itis evident that a single series may, if preferred,
be used for several calculations in some cases, by assigning successively doubled
values to A.
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Example 1. To illustrate this procedure, we consider the solution of the differ-
ential equation

D L ]
and hence calculate successively the approximate values of y at x = 0.1, 0.2, 0.3,
and so on. By successive differentiation we obtain

Yy=y—x, Y =y-1 Yy =y,

Hence, at x = 0, we have y, = 2 and

o=2 Y=L y=L ...
and, with k = 0, Equation (3) gives
Y
n=yot2ht o+ g o
= 2 + 0.2000 + 0.0050 + 0.0002 + - -+ = 2.2052.

Next, at x = 0.1, we have y; ~ 2.2052 and
y1 == 2.1052, y1 == 1.1052, _y’l” ~ 1.1052, cees

and, with k = 1, Equation (3) gives
Yo=t yy + 2.1052h + 0.55264 + 0.1842K° + -
= 2.2052 + 0.2105 + 0.0055 + 0.0002 + - - - = 2.4214.

The procedure may be repeated as often as is required. In this example the exact
solution is readily found to be
y=€e+x+1,

and the above results are found to be accurate to the four decimal plaoes retained.

This procedure is readily generalized to the solution of initial-value prob-
lems involving differential equations of higher order, as may be seen from
Example 2, below. For a second-order equation it is found to be necessary to
calculate y,, as well as y, ., before proceeding to the calculation of y,,. For
this purpose we may differentiate y(x - 4) with respect to x to obtain

4 ! ” h L hz
y(x+h)=y(x)+y(x);—|—y (x)a-l-"'
Setting x = x,, there then follows
’ ! " h Hi h2
Ve = Vet Ve TV oy 4)

This result can also be obtained by differentiating Equation (3) with respect to
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h, as may be seen directly from the fact that the derivatives of y(x + k) with
respect to x and 4 are identical.

Example 2. Consider the nonlinear differential equation

d’y dy .
o dax T
with the initial conditions that y = I and y* = —1 when x = 0. We calculate the

successive derivatives
yﬂ =yr . Xle, ym — yﬂ _ zxyyf __))2’
yiv — ym’ _ 2xyr2 - zxyyu _ 4yyl’

Hence, at x = 0, we have yy =1, y, = —1, and

Yo=Yo="—L Yo =yo—¥o=-2 y5=2
Then, with k = 0, Equation (3) gives

LI S &
and, taking A = 0.1,
yne1-—0.1-—0005—0.0003 + --- = 0.8947.

Now, in order to calculate y, it will be next necessary to calculate y;, y;, and so on.
However, the calculation of these values involves knowledge of the value y; in
addition to the value of y;, which is now known. The value of y; can be calculated
by using the series
X
n=-1-h —h2+§ + -,

which is obtained by differentiating the series defining y; = y(x, + A) with respect
to h. Hence we obtain

yj= ~1 = 0.1 —0.01 + 0.0003 + - -+ = —1.1097.

The values of yj, y;, and so on, can now be calculated from the forms given, and

the calculation of y, and y, proceeds in the same way.

A further generalization to the solution of two simultaneous equations of
the form

dx dy
— = F(x,y,t) and — = G(x,y,1),
T (x,,1) an 5 (x.y,1)

with prescribed initial values of x and y, is readily devised.

3.3. The Adams method. Suppose again that the solution of the problem

j—i’ = F(xy),  y(xo) = ¥o )
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has been determined up to the point x;, = x, + k4. If now we assume that

d .
over the interval (x,, x, -+ /) the derivative -d—i changes so slowly that it can

be approximated by its value y; at the point x,, then over that interval the

___ approximate increase in y is given by hy;, and weobtain
ViV thy=y+hE, (6)

where F, is written for F(x,,y,). This formula obviously would give exact
results if y were a linear function of x over the interval considered.
A more nearly exact formula is obtained, in general, if we assume that the
.o dy . :
derivative ZI% is nearly /linear over the interval (x, — h, x, + h), and hence that
the graph of y can be approximated by a parabola over this interval. We thus
assume the approximation

F(x,p) =~ a + b(x — x3) (xyp—h<x<x.,+h)

and determine the constants @ and b in such a way that the approximation
takes on the calculated values of F(x,y) at the points x,, — & and x;. In this
way we obtain
Fe — Fioy

h

Hence, integrating both sides of the differential equation (5) over the interval
(xps X + H), we find

xpt+h x_xk
Ye+1 = Ve = Fk+(Fk_Fk-1) n dx
Tk .

a=F, b=

h
Eth_}—E(Fk_Fk—l)

h
or J’k+1§J’k+th+5(Fk_ k=1)- (7

The last term of this expression is seen to be a correction to the expression
given by (6) and may be appreciable if the derivative 3% varies appreciably over

the interval considered. It should be noticed that the first ordinate calculable
by (7) is y,, when k& = 1, and that in this case the values of y, and F, are
needed in addition to the known initial value F,. The value of y, must be
determined by another method, for example, by the use of Taylor series; the
value of F, is then given as F(x,,y,). With the notation

AF, = Fyy1 — Fi
Equation (7) can be written in the form
Verr = Ve + B(F, + 2 AF, ). (8)
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Still more accurate formulas can be obtained, in general, if the derivative
of the unknown function y is approximated by a polynomial of higher degree
n, taking on calculated values at n 4+ 1 consecutive points. By an extension
of the preceding method (see Section 3.7), a formula is obtained when F(x,y)
is approximated by a polynomial of fourth degree, in the form

Vier1 =2 Vi +ALF +3AF  + & A, , + §A°F, 3 + 333 AY, 4] %
with the notations
AFr =Fo— F,
AzF':v'zA}:"MI_A-FW
ASF, = A%F,,, — A®F,,
A'F, = A3F,,, — A’F,.
These notations define the first, second, third, and fourth forward differences
of the calculated values of F which, as will be seen, are readily evaluated if the
calculations are suitably tabulated.

Formula (9), which involves fourth differences, would give exact results if,
over the interval (x, — 4h, x,, + h), the unknown function y were a poly-
nomial of fifth degree in x. Formula (6) is obtained from (9) by neglecting all
differences, and (7) or (8) is obtained by retaining only first differences. Form-
ulas of intermediate accuracy can be obtained from (9) by retaining only terms
through the second or third differences.

It should be noticed that if, for example, it is decided that second differences
are to be retained, the calculation of y,,, makes use of the values of Fy, F;_,,
and F,_,, and hence of the values y,, y;_;, and y,_,. Thus, the first ordinate
calculable in this case would be y;. Since only y, is prescribed at the start, the
values of y; and y, must first be determined by another method, such as that of
Taylor series, or the Runge-Kutta method of the following section when initial
series developments are not feasible. Similarly, if third or fourth differences
are retained, three or four additional ordinates, respectively, must be first
calculated by another method before the present procedure can be applied.

(10)

Example 3. We apply this method to the continuation of the solution of the
problem considered in Example 1, retaining second differences. The work is tabulated
as follows:

x y F=y-x AF A'F
0 2 2 01052 | 00110 |
01 | 22052 2.1052 01162 | 00122
02 | 24214 22214 | 01284 |
03 | 26408 | 2348
oafomn ] 1|
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Before the Adams formula is applied to calculate y,, the two initial ordinates y,
and y, are required in addition to the prescribed ordinate y, = 2. These ordinates
are taken from the results of Example 1 and are entered into the second column of
the table as shown. The corresponding values of F are then entered in the third
column. Each entry in the fourth column is obtained by subtracting the corre-

[JOTIU :' \ - L L) » lii’:i'i:"' ; ip= ‘il"‘::"ii’
signs must, of course, be retained. The last column contains similar differences
between successive entries in the AF column. In this way the entries above the
division line in each column of the table are obtained. Now, to calculate the
ordinate y,, we make use of Formula (9), neglecting the last two terms, and notice
that the quantities needed are exactly those which appear immediately above the
division line in each column, i.e., the last numbers entered in the columns at this
stage of the computation. We thus obtain

¥ ¢ 24214 + 0.1[2.2214 + $(0.1162) + £5,(0.0110)] = 2.6498.

It is seen that the differences needed at a given step of the calculation recede along
successive columns in the table. The value of y, is now entered in the second column,
the corresponding value of F is calculated, and additional differences are deter-
mined. The next ordinate is then calculated as before,

¥s = 2.6498 + 0.1[2.3498 + 1(0.1284) + 5(0.0122)] = 2.8917,

and the process is continued in the same way. A rough check on the accuracy
obtained at each step can be obtained by estimating the contribution of the neglected
third difference. Thus, retention of third differences in the calculatton of y, would,
in this case, increase the value obtained by 3(0.1)(0.0012) = 0.00005, and hence the
fourth places in the results are in doubt. The correct value is ¢”3 + 1.3 = 2.8918,

To apply the Adams method to a second-order equation of the form

= e 5) |
—, = XY — 1 11
dx® Y ax (1)
d
we may first introduce the notation p = EZ and hence replace Equation (11) by
the simultaneous equations o
d
-
p > - (12a,b)
L — F(x.y.p)
dx J
The initial conditions at x = x,,
d
y = Yo d—fc=p=po (13a,b)

are to be satisfied. Then, applying (9) separately to (12a) and (12b), we obtain

the two formulas
° e V=Y +h(pe + 3 Bpye_y + )
P =2 pe +HF, + 3AF,_, + )
and proceed step by step as before.

, (14a,b)
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Example 4. We apply this method to the continuation of the solution of the
problem considered in Example 2, retaining (for simplicity) only first differences.
The work is tabulated as follows:

x y D Ap F=p=xy? AF
0 1 -1 =0.110 -1 -0.190
0.1 0.895 -1.110 -=1.190
0.2 0.779 -1.238
P o

The values of y; and p,, taken from Example 2, as well as the prescribed values of
Yo and p,, are first entered. Next the corresponding values of F and the differences
Ap, and AF are calculated and entered. Equations (14a,b) then give

yg == 0.895 + 0.1(—1.110 — 0.055) = 0.779,
ps== — 1110 + 0.1(—1.190 — 0.095) = —1.238,

At this stage a second difference A%py = —0.018 can be calculated. Since its contri-
bution to the calculation of y; would be —0.00075, it may be presumed that the
result for y, is also in doubt by about one unit in the third decimal place.

The generalization of these methods to the solution of more general initial-
value problems involving two simultaneous differential equations offers no
difficulty.

3.4. The modified Adams method. A useful modification of the Adams
method in the case of a first-order equation consists of using an appropriate
truncation of the Adams formula

Vir1 =2y + hlF,+}AF, + 5% Asz_z +3 A3Flc—3 + 3‘3%A4Fk—4] (15)

only as a “predictor,” to provide a first approximation to the value of y,,;,
and of using a corresponding truncation of the formula

Y12 Yy T hlFea— 1AF, — LA, — LA, — B AN, 5] (16)

asa ‘“‘corrector.” The derivation of the latter formula is indicated in Section 3.7.

The approximation yielded by (16) usually is better than that afforded by
(15), when both are terminated with differences of like order, since the co-
efficients of the higher differences are smaller in (16). However, this advantage
is partly offset by the fact that, since the right-hand member of (16) involves
Frp1 = F(xp,4.V141), this equation expresses y,,; (approximately) in terms of
itself. Thus (16) generally cannot be solved analytically for y, ; except in
special cases, such as those in which F'is a linear function of y.
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Fortunately, resort generally can be had to a simple iterative procedure
for the solution of (16) when the spacing # is sufficiently small. For this
purpose, (15) is first used to determine a “predicted” value of y,,;, in corre-
spondence with which the approximate value of Fy_, is calculated, together
with the approximate new differences AF, = F,,; — F,, A%F,_,, etc. Then

(16) is used to determine a ‘“corrected” value of y,,;. If this value differs
significantly from the predicted value, the entries Fy,,, AF;, etc., then are cor-
respondingly corrected and (16) is used again, to provide a “recorrected” value
of y,.,1. Generally the need for this recortection is avoided either by retaining
a sufficiently large number of differences or by taking the spacing 4 to be
sufficiently small.

Example 5. In the case of the problem considered in Example 3, the entry 2.8917
here would be interpreted as the predicted value of y,. When corresponding approxi-
mations to F,, AF,;, and A®F, are calculated, the tabulation appears as follows:

x y F AF A'F
0 2 2 0.1052 0.0110
0.1 2.2052 2.1052 0.1162 0.0122
0.2 24214 2.2214 0.1284 0.0135
0.3 2.6498 2.3498 0.1419
0.4 2.8917 2.4917

From (16), truncated also to second differences, a corrected value is obtained,
ya222.6498 + 0.1[2.4917 — $(0.1419) — 1,(0.0135)] = 2.8918,

in correspondence with which the tabulated values of F,, AF;, and A%F; each are
corrected by one unit in the last place retained. Clearly, no additional corrections
will result from a repetition of the process, so that an advance to x = 0.5 appears
to be in order.

When both formulas are truncated with a difference of order r (r = 2 in
Example 5), the error in the finally corrected value can be estimated by the
formula c
—~ yk+1 _— yk+1, (17)
24 4r

where yf ., is the “predicted” value obtained from (15) and y£ , , is the final
“corrected” value obtained from (16). (See Reference 2.) This estimate applies
only to the error introduced, by using (16) to approximate the differential
equation, in progressing from x, to x,,,. It ignores the accumulated effects of
errors of the same type introduced at earlier stages, as well as the effects of
“round-off”’ errors; also its validity essentially presumes that the spacing 4 is
sufficiently small to obviate the need for “recorrection.”
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Thus, for example, when only second differences are retained, the error
in the corrected value can be estimated as (yf,; — y§,,)/10, provided that
this estimate is small, that the same is true of the corresponding error estimates
at all preceding stages, that recorrection was not needed, and that round-off
errors have been controlled by the retention of an appropriate number of

significant figures in all calculations.
It happens that the rate of convergence of the iterative process, in the
determination of y,,; from (16), depends upon the magnitude of the quantity

dy

where B is the algebraic sum of the numerical coefficients of the differences
retained in (16). (See Reference 2.) Thus, when second differences are retained,

g=1—%—-424

Unless [p,| < 1, the process either will not converge or will converge so slowly
that many recorrections will be needed, in general. In the case of Example §
the “convergence factor’ pg is seen to be

ps = i2h =~ 0.04.

Pr =

5
iz

Before starting a step-by-step calculation based on (16), it is desirable to
verify that the spacing 4 is such that the magnitude of the initial convergence
factor p, is small relative to unity.

The application of the modified Adams method to the second-order
equation (11), or to a higher-order equation, is perfectly straightforward. In
the case of Equation (11), y" = F(x,y,y"), the approximate ‘“‘convergence

factor” is found to be
= onlon (55) + (35).) 09

3.5. The Runge-Kutta method. The method associated with the names of
Runge and Kutta is a step-by-step process in which an approximation to y,,,
is obtained from y, in such a way that the power series expansion of the
approximation would coincide, up to terms of a certain order A" in the spacing
h = X;41 — X), with the actual Taylor series development of y(x; + A) in
powers of 4. However, no preliminary differentiation is needed, and the
method also has the advantage that no initial values are needed beyond the
prescribed values. Such a method is particularly useful if certain coefficients
in the differential equation are empirical functions for which analytical expres-
sions are not known, and hence for which initial series developments are not
feasible. In place of using values of N derivatives of y at one point, we use
values only of the first derivative at N suitably chosen points.
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The derivation of the basic formulas may be illustrated by considering the
special case when second-order accuracy in 4 is required. Again starting with
the differential equation

2 — Fx) (20)

and the prescribed initial condition y = y, when x = x,, the Taylor series
expansion of y,.; = y(x. 4+ h) up to second powers of & is obtained, by
introducing the two succeeding relations into (3), in the form

2
oF, y_ka)b_Jr... (21)
dx 0y

yk+1=yk+Fkh+( >

with the notations

F, = F(x,y:)s aFk = aF(xk’y") aFk — aF(xk,yk) -

ox ox dy  dy
We assume an approximation of the form
Vet 22 Vi + W B Fy + A h F(x, + b, yi + poh F) (22)

and attempt to determine the constants 4,, 45, g;, and u, in such a way that
the expansion of the right-hand side of (22) in powers of 4 agrees with the
expression given by (21) through terms of second order in h. From the Taylor
series expansion

S+ H,y + K) = f(x,y)+Haf§‘ Dy PN
X ay

for small values of H and K, where the following terms are of second order
in H and K, we find

F(x, + wh, y, + poh F)

= F(x;,yy) + uph

aF(g‘;,yk) + /,t2h aF(stylc) Fk + -

dy

OF, OF, }
F e
™ + uy 5 + -

where the omitted terms are of at least second order in 4. Hence (22) becomes

OFy 1 4 aF"Fk)h2+---. (23)
0x dy

The terms retained in Equations (21) and (23) are brought into agreement
if we take, in particular,

A=A =1 My = pp = L.

Vi1 = Vi + (4 + )Fh + A, (F‘l
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Thus Equation (22) becomes, in this case,

h
Ver1 2 Y + E [F(xks.Vk) + F(x, + h,y,+ h Fk)]
or, writing
1 = ko Y k/» 2 — k » Yk >

this result can be put in the form

Vi1 =2 Y + MK + Ky). (25)
It should be noticed that Equation (23) can be brought into agreement
with (21) in infinitely many ways, by taking
1
S 21— 4y
where 4; 7 1 but is otherwise arbitrary. Thus infinitely many other forms of
(22) could be obtained, in addition to the rather symmetrical form chosen here.
By methods analogous to that just given, similar formulas giving higher-

order accuracy in # may be obtained. We give without derivation two such
procedures:

Ao =1— 14, My = Hg

Third-order accuracy:

Vi1 =2 Vi + $(ay + day, + ay) (26)
a, = h F(x;,y:)
ay = h F(x, + 3h, y, + $ap) 27)

ag = h Fx; + h, y, + 2a, — ay)
Fourth-order accuracy:

Yirr =2 Vi + &by 4 20, + 2b; + by) (28)
bl = h F(xk,yk)
bz = h F(x; + %h,yk + %b1)
ba =h F(xk + %h,yk + %bz)
by = h F(x, —l—h,yk + b3)

The close relationship between Equations (26) and (27) and the formula of
“Simpson’s rule’” (see Problem 25) may be noticed.

Let the error associated with using a procedure of Nth-order accuracy &
times with spacing A be expressed in the form K k A¥*!; that is, suppose that
the correct result is given by adding K k h™ *! to the calculated result. Then it
can be shown that in ordinary cases the quantity X is not strongly dependent
on k, h, and N. Thus, if the spacing were doubled, the error associated with
the corresponding new calculation would be approximately

(29)

Kg (2h)N+1 _ 2NKk h‘\' f-l.
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Since the result of subtracting the ordinate determined by the second method
from that determined by the first would then be 2¥ — 1) Kk A¥+1, it follows
that this difference is approximately (2¥ — 1) times the error in the first (more
nearly exact) calculated value. In this way we are led to the following error
estimate:

If a procedure of Nth-order accuracy gives an ordinate y'V with spacing h
and an ordinate y'® with spacing 2h, the error in y'V is given approximately by
(Y — y@)2¥ — 1).

Thus, the difference between the two results is divided by 3 if (24) and (25)
are used, by 7 if (26) and (27) are used, and by 15 if (28) and (29) are used, to
obtain an error estimate.

Example 6. We apply (26) and (27) to integrate the equation considered in
Example 1. The work can be arranged as follows:

x 0 0.1 02 |
y 2 2.20517 2.42139
a, 0.2 0.21052
x+1ih 0.05 0.15
y+iaq 2.1 2.31043
a, 0.205 0.21604
x+h 0.1 0.2
y+2,-a, | 221 2.42673
as 0.211 0.22267
——-——-—"‘“;’ 2¥as | 20517 | o0.21622

If the spacing is doubled, the result y, = 2.42133 is obtained directly (with 2 = 0.2).
Application of the error estimate gives the approximate error (0.00006)/7 = 0.00001,
which indicates that the first value calculated for y, may be one unit too small in the
last place retained. The exact value is y; = 2.42140 to five decimal places.

To integrate a second-order differential equation of the form

d?y ( dy)
£ _ Flxy, & 30
dx? %) dx (30)
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with the initial conditions y = y, and )’ = y; when x = x,, with third-order
accuracy in the spacing, we first calculate successively the values

kl = h y”C’ )
ki = h F(X,Y1 V)5

ki = h F(xy + bh, 3y -+ ko, 74 + 1D, G
ks = h(y, + 2k; — k),
ky = h F(xi + b, yi + 2ky — ky, vy + 2k3 — k7).
The values y,,; and y;_, are then given by
Yi+122 Vi + 3(ky + 4ky + k) (32)
and Yir122 Vi + §(ky + 4kg + k). (33)

A corresponding formula giving fourth-order accuracy can be written down by
analogy from (28) and (29).

Example 7. Applying this method to calculate y, in the case of the problem of
Example 2, we obtain successively

k, = —0.1, ky = —0.105, ks = —0.11190,
ki = —0.1, k; = —0.10951, k5 = —0.11982.
There then follows
yi==1 —3(0.1 + 0.42 + 0.11190) = 0.89468,
yi== —1 — (0.1 + 0.43804 + 0.11982) = —1.1096.

3.6. Picard’s method. In contrast with the step-by-step methods so far
considered, in which successive ordinates are calculated point by point, the
method of Picard is an iterative method which gives successive functions which,
in favorable cases, tend as a whole (at least over a certain interval) toward the
exact solution. Although the method is of limited practical usefulness, it
illustrates a type of procedure which is of frequent use in other applications,
and is in itself of theoretical importance.

Considering first an initial-value problem of first order,

2~ Flxy) (34)
dx
where y = y, when x = x,, we formally integrate both sides of Equation (34)
over the interval (x,,x) to obtain an equivalent expression

y=yo+ [, Feey)ds. (35
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Now, to start the procedure, we take as an initial approximation to the
function y (to be determined) a suitable function of x, say y'V(x). If the general
nature of the required solution of (34) is known, this initial function may be
chosen on this basis. Itis preferable that it satisfy the initial condition, although
this is not necessary. In the absence of further information, the initial approxi-

mation function y¥(x) may be taken as the constant y,. With this assumed
approximation for y, as a function of x, the function F(x,)') becomes a
known function of x, and a second approximation to the function y, say
y®(x), is given by

YO0) = yo + [ FLxy®(0] dx. (36)

A third approximation is obtained by replacing y by y¥(x) in F(x,y) and using
Equation (35) to give

YO0 = yo + | FIxy®(0] dx. (37)

In this way successive approximations are obtained as functions of x,
according to the formula

YO = 3o + [ FLxy™(o] dx. (38)

If F(x,y) is sufficiently regular near the point (x,,y), the successive approxi-
mations 'V, @, ..., y™ will tend toward a limiting function y(x) over some
interval in x about x = x;, and that function will satisfy the differential
equation (34) as well as the prescribed initial condition.

Example 8. Applying this method to the solution of the equation of Example 1,
we write

Y — 2 4 f: ™ — x) dx.

Taking y!) = 2, we obtain successively

Fz‘ x2
y(2’=2+J 2—-—x)dx =2+ 2x — =,
0 2
@) =2 N 2 x dc =2 + 2 +x2 x
yB = +u0 + x 7 x =2 + 2x 5 g’
(4)—2+M2+ +x2 x3af—2+2x+x3 X
A A XT3 T 276 T’
and so forth. In this case it is readily shown by induction that
y y
x2 x3 xn xn+1
(n+l) — —_ _— —_—
% S T TR R 1T

and as n becomes large we are led to a consideration of the infinite series

x x% x"
y=l+x+ 1+'i'-!+'2—!+"'+‘n—!+"' ,
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which may be recognized as the expansion of the known exact solution
y=1+x+¢€,
the expansion converging for all values of x.

In practice it is usually not feasible to obtain an explicit expression for the

nth approximation and to proceed to the exact solution by a limiting process,
as in the example given. Furthermore, the successive approximations need not
be polynomials, as in this case. Still, if a particular approximation is used to
calculate y, the accuracy at a given point can be estimated roughly by consider-
ing the deviation between this approximation and the preceding approximation
in the neighborhood of the point.

Similar procedures can be devised for dealing with equations of higher
order, the convergence of the successive approximations to the true solution
depending upon the regularity of the coefficients.

3.7. Extrapolation with differences. For purposes of simplicity, the details
of the derivation of Equations (9) and (16), which specify the Adams method
and its modification for the numerical integration of differential equations,
were omitted in Sections 3.3 and 3.4. In this section we indicate this derivation
and also point out the usefulness in other connections of certain intermediate
and related results.

We again denote the value of a function f(x) at one of n + 1 equally
spaced points,
xk, xk_1=xk‘—h, xk_2=xk—'2h, v ey xk___ﬂ=xk_‘nh, (39)

by the abbreviation f, = f(x,). In Section 3.3 the forward differences were
defined by the equations

Ae=fri—fo AY=0Mu—Af=fue—2utfe  (40)
and so forth. In some developments it is more convenient to use the so-called
backward difference notation, according to which we write instead

Vf=fi—fiv szr = Vf,— Vfr—l =fr = 2fi + fr2 (41)
and so forth. These two notations clearly are related by the equations
Af, = Vi 8=V .., A=V (42)
Thus, for example, we have
fi—f=0R=Vfs fi—26+fi=0%h=V,
In particular, Equations (9) and (16) take the forms

Vir1 =2 Vi T h[F, + %VFk + % VEF, + % Vst + 233 V4Fk] (43)
and

Vi 22 Ve + b Fy — 3 VFy — & V3R
- 21'4, VaF k1 71220 VAF k+1]: (44)
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with the notation (41) of backward differences, the subscripts on the right in
these equations no longer varying from difference to difference.

In order to determine a polynomial approximation of degree n, to a function
f(x), having the property that agreement is exact at the n + 1 points defined
in (39), it is convenient for present purposes to write the approximation in the

form
f(x) = dg + al(x — X)) + a(x — x)(x — x;_y)
+ ag(x — x)(x — Xy )(x — Xp_p) + - -
Fa,(x — x ) x — X q) (X — Xppiy)- (45)

In this form the coefficients are readily determined by forming successive
backward differences at x = x;, as follows. First, setting x = x,,and replacing
the approximation by an equality, we have

a4y = Jy- (46a)

Next, if we calculate the difference Vf(x) = f(x) — f(x — h) and use (39),
there follows

Vf (%) = hay + 2hay(x — x,) + 3has(x — x)x — X)) + -
+ nha,(x — x)(x — x4y (X — Xp_pio)-

Thus, setting x = x,. and requiring equality, we obtain

a, = % v, (46b)

After calculating the second difference,
VE(x) = 2 1h%a, + 3 - 2hPag(x — x) + =+

+ n(n — DiPay(x — x)(x — X1} -+ - (¥ — Xy_py4a),
we determine a,,
1

BPIE

From the way in which these results were obtained, it can be seen that the
general result will be of the form

1
rth’

The resultant approximation formula (45) can be put into a conveniently
compact form if we write

7 (46¢)

as

Vi, (k=0,1,2,...,n). (47)

a, —

X — X
X = X, + sh, § = - k

so that s is distance measured from the point x,, in units of the spacing A.

, (48)
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With this notation, the introduction of (47) into (45) then gives

s(s + 1) VY, + s(s + D(s + 2) vy,

S+ shy=f, + s Vf, + X 31

+_“+.>(a—i—i) (a—i—n—l}vnfk (49)

if use is made of (39). This result is known as Newton’s (or Gregory’s) backward
difference formula for polynomial approximation.

Thus, if the values of a smooth function f(x) are known at n + 1 equally
spaced points, we may suppose that the function is approximated by the nth-
degree polynomial which agrees with f(x) at these points and, accordingly,
use (49) to determine approximate values of f(x) at additional near-by points.
This formula is particularly useful for extrapolation (prediction) beyond the
point x,, at the end of a range of tabulation, although it can also be used for
interpolation, with negative values of s.

To illustrate the use of this formula in extrapolation, we consider the

function f(x) = V'x. Assuming known three-place values for x = 2, 3, 4, 5,
and 6, we form the following difference table:

x ' f vf vif vf

20 | 1.414

|' 0.318
30 | 1732 —~0.050

! 0.268 0.018
40 | 2000 —0.032

| 0.236 0.009
5.0 2.236 —0.023

I 0.213
6.0 | 2.449

To extrapolate for v 6—.2_, we set s = 0.2, since here # = 1, and retain third
differences. Equation (49) then gives

£(6.2) 2 2.449 + (0.2)(0.213) + (_0-2)2(1-2)

(—0.023) +

(0.2)( 162)(2.2) (0.009)

= 2.449 4+ 0.0426 — 0.0028 + 0.0008
= 2.490.

Similarly, to interpolate for V5.8 we take s = —0.2 and, again retaining third
differences, obtain the value 2.408. Both the values so obtained are correct to
the same number of places as the given data. In general, however, extrapolation
is less dependable than interpolation.
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Equation (49) is also useful for integrating a tabular function over an
interval near the end point x,. Thus we have, for example,

zpt+h

. f)dx=h f: f(x, + sh) ds
———and (49) then gives —— — — — —

f(x)dx = h[f, + 3 Vfi + 2 V¥,

+ 3 Vafk + 738 4fk + -] (50)

When f(x) is a polynomial, the sum on the right terminates, and yields an
exact result. More generally, when f(x) is not a polynomial the result of retain-
ing differences through the nth is identical with the result of replacing f(x) by
the polynomial of degree n which agrees with fat the n + 1 points x;, x;_;, ...,
X._n and integrating that polynomial over the interval (x;, x, + A).

In illustration, if we use (50) to approximate f; v'x dx, with third differ-
ences, we obtain

f: V/x dx == 1[2.449 + 3(0.213) 4 15(—0.023) + $(0.009)] = 2.549.

This is in agreement with the true three-place value.
Similarly, from the relation

Ty

0
L J@dx=h [ f0o+ shyds,

we obtain the formula
[ f&)dxx HLf — 3 VS, — i VP,
— 21"4 Vafk — 71'2%) V4fk + - ] (51)

Equation (50), with f replaced by F, leads to the approximate relation (43)
or, equivalently, (9) when dy = F dx, and hence

Ti+l
Y1 = Ve = f F dx.

Tx

Further, Equation (51) leads similarly to (44) or (16) when & is replaced by

k+ 1.
Finally, we may use (49) to obtain an approximate derivative formula.
d
Since f'(x) = h7! d_{ , we obtain the relation
/ I 2 1 35 + 65 + 2
S -+ Sh)__":;|:ka+ S;_ V¥ + £ V3fk+"‘jl- (32)
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d -
Thus, to approximate (‘—i; v x) by using the tabulated data, we take s =0

=6

and hence, again using third differences, obtain
JS'(6) = 1 [0.213 + #(—0.023) + 4(0.009)]

= 0.213 — 0.0115 + 0.003 = 0.2045.

The true result is 0.204, to three places. Although satisfactory results were
obtained here, it should be noted that, in general, approximate differentiation
is inaccurate. Its accuracy may be very seriously impaired by small inaccuracies
in the tabulated data. Still, there are occasions when there is no alternative
but to use an approximate method of this sort.

The formulas and methods of this section illustrate the treatment of
tabulated data near the end of the range over which a tabulation exists. These
data are usually the most troublesome to deal with. This section may be
considered also as illustrating the more general use of finite differences in
approximate analysis.

Analogous formulas for interpolation and other operations near interior
tabular points may be found in texts treating numerical methods. (See also
Problems 21-24.) In such formulas the so-called central difference notation is
particularly useful. In this notation one writes

fr _ﬁ—l = ‘sﬂ—uz, 6ﬁ+1/2 - ‘Sf;~1/2 = ‘Szﬁ’ tee (53)

so that the subscript of a difference is the mean of the subscripts of its parents.
Thus we have the general notational correspondence

fr+1 _f; = Aﬁ' = 6ﬂ+1/2 = Vj;‘+1’
Jrv2 — 2o + 1, = A%, = 8 = V¥,

and so forth. The “forward” difference Af’is sometimes called a “‘descending”
difference, whereas the “backward” difference Vf is sometimes called an
“ascending” difference. Although this practice leads to a certain amount of
confusion, its motivation may be realized by an inspection of the following
table of difference notations.

Jo

Afo = 0fie=VAi
S Ay = 0%, = V2,

Afl = 6f3/2 = sz A% = 5?f3/2 = V?f;
f A2fl = 62fz = sza

Af2 = 6f5/2 = Vfa A?ffl = 6%/2 = Vaf;
fa A2f2 = ‘5‘73 = V2f4

Afa =012 = Vs
Ja
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It is apparent that the differences Af;, A%f,, A%,, and so forth, “descend”
to the right, whereas the differences Vf,, V?f,, V3f,, and so forth, “ascend” to
the right. The central differences 8%, d%f,, and so forth, remain in the same
horizontal line as the entry f,, whereas the differences 8f,.1 /9, 6%f;, 0%frs1/0 Y
and so forth, form a “forward zigzag’ set of differences in increasing order,

remaining as close as possible to a horizontal line.

More detailed treatments of the errors associated with formulas for
approximate interpolation, numerical integration and differentiation, and the
numerical solution of differential equations may be found in many sources,
including the references listed at the end of this chapter.
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PROBLEMS
Section 3.1
1. Use the method of isoclines to sketch the integral curves of the equation
dy _
7"

in the first quadrant.

2. Proceed as in Problem 1 with the equation
dy
T ¥y =x%

3. Use the method of isoclines to obtain a sketch, in the first quadrant, of the
integral curve of the equation

dy
Ec—xzy=x

which passes through the point (0,1).
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Section 3.2

4. Use the method of Taylor series to determine to four places the values of the

solution of the problem
dy 0
i 'y = X, w0) =1

— — X

at the points x = 0.1, 0.2, and 0.3.
(The true values at x = 0.1, 0.2, 0.3, 0.4, and 0.5 round to 1.00533, 1.02270,

1.05428, 1.10260, and 1.17072.)

5. Use the method of Taylor series to determine to four places the values of the
solution of the problem

dy 5
Z-x-i—xy =0, yO0) =1

at the points x = 0.1, 0.2, and 0.3.
(The true values at x = 0.1, 0.2, 0.3, 0.4, and 0.5 round to 0.99502, 0.98039,

0.95694, 0.92593, and 0.88889.)

6. Use the method of Taylor series to determine to four places the values of the
solution of the problem

a2 d
a;);—x22y;—2xy=1, H0) =1, y(0) =0

at the points x = 0.1, 0.2, and 0.3.
(The true values are the same as those in Problem 4.)

Section 3.3

7. Assuming the values of y in Problem 4 for x = 0, 0.1, 0.2, and 0.3, use the
Adams method to calculate the values for x = 0.4 and 0.5, using third differences.

8. Assuming the values of y in Problem 5 for x = 0, 0.1, 0.2, and 0.3, use the
Adams method to calculate the values for x = 0.4 and 0.5, using third differences.

9. Assuming the results of Problem 6 for x = 0, 0.1, 0.2, and 0.3, use the Adams
method to calculate the values of y for x = 0.4 and 0.5, using third differences.

Section 3.4

10. Use the modified Adams method, retaining only second differences, to
effect the determinations of (a) Problem 7, (b) Problem 8, and (c) Problem 9. At
each stage, use Equation (17) to estimate the error introduced.

11. If no differences beyond the second are retained, show that the formulas (15)
and (16), of the modified Adams method, can be written in the explicit forms

h
_yk+1 %yk "|" ]_2 (23 Fk - 16 Fk__]_ "|“ 5 Fk—2)

h
and Vi1 2 Yk + 15 (5 Fry1 + 8F, — Fy),
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respectively. (These formulas are easily used, since differencing is not involved.
However, the use of differences is usually preferable in questionable cases, since
then gross errors may be indicated by irregularities in the columns of differences,
and also warnings may be served by trends observable in these columns.)

12. Making use of the fact that, for small values of the spacing A, there follows

Ar r é) hrd,f
[V df ~ =2,

show that the errors introduced into the formulas of Problem 11 by neglecting the
Sirst omitted difference are respectively approximated by

3nt (d*y h d4y
8 \dx4/.’ dx*),
{It is known that the true truncation error in each of these cases is given by the

di

a4
result of replacing ( 'y) by the value of —=; d);at some point between x;_, and x;

in the expression so obtained.]

Section 3.5

13. Use the Runge-Kutta method, with third-order accuracy, to determine the
approximate values of y at x = 0.1 and 0.2 if y satisfies the conditions of (a)
Problem 4, (b) Problem 5, and (c) Problem 6.

14. A function y(x) satisfies the equation
d2y + 0
22 Tren) =

and the initial conditions y(0) = 1 and y(0) = 0. The following approximate
values of the function ¢(x) are known:

x 0 0.05 0.10 0.15 0.20
o(x) 1.000 1.032 1.115 1.249 1.434

Use the Runge-Kutta method, with third-order accuracy, to determine approximate
values of y at x = 0.1 and 0.2.

Section 3.6

15. Apply Picard’s method to the solution of the problem
dy
I - X%y =x, y0) =1,

taking y)(x) = 1 and making two successive substitutions, and compare the
approximations with the series expansion,

y=1+32+33 4+ Ax% + LS+ -0,

of the exact solution.
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16. Apply Picard’s method to the solution of the problem

dv
;E_)’z:x’ )’(O)zl,

taking y(x) = 1 and making two successive substitutions, and compare the

approximations with the series expansion,
y=1l+x+3I2+ &3+ 212x4 4 .-

of the exact solution.

Section 3.7

17. Suppose that the following rounded values of a certain function f(x) are
known:

x 1.0 2.0 3.0 4.0 5.0
fix) | 12840  1.3499 14191 14918  1.5683

By making use of formulas derived in Section 3.7, obtain approximate values of the
following quantities as accurately as possible:

(a) f(4.8), (b) f(5.2), © f15.0), @ [, fe ax.

18. Derive from Equation (49) the formula

x; +th t 342
f FO) dx = th |:fk £35S +L1_2_’)szk N ]

19. Use the result of Problem 18 to obtain, from the data of Problem 17,
approximate values of the following quantities:

"'5.2 4 b 5.0 4
(a) 5 0S¥ dx, (b) 15 S ) dx.
20. Establish the following notational relations:
(@) Afr = 6f‘r+1!2s (by v Afr =A Vfr = é2fr’

(c) AV Afr = é:yr+ll2-

21. Determine the coefficients specifying the polynomial approximation of
degree n = 2k of the form

f(x) =ag + ay(x — xg) + ax(x — xo)x — xy)
+ az(x — xp)(x — x )Mx — x_y)
+ agx — xgx — xP)x — x_)(x —x9) + - -
T @u(x = xlx — xX)x — x_p) - (x — xd(x — x_g),
so that the two members are equal at the n + 1 equally spaced points
X_p=X9g—kh, ..., Xgo ..., Xy =Xx¢+ kh,

by calculating the difference Af(x) = f(x + h) — f(x), then the differences
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VIAf(x)], A [V Af(x)), and so on, and equating the two members at x = x, after
each such differencing. Thus show that a, = f;, that

Af(x) == hla; + 2a5(x — x¢) + 3az(x — xpdx — x_))
+ 404(x —_ xo)(x — x_l)(x - xl) + oo ],

Afo 8f
and hence that q, = TU = llrl =, and so forth. Make use of the results of Problem
20 to express the result in the form
12 *fo
SO =fo + (x — x¢) 77 e + (x — xg)x — xl)m
+ (X — x}x — x)0x — )3,f1 ,:;Z‘
5%
+ (= x)(x — x)(x — x_1)(x — x3) Y h“

22. By writing x = x, + sh, express the result of Problem 21 in the form

s(s —l) s2—1)
0%y + S(—éfl/z

(s2 — 1)(s — 2
s(s 4!5' )Mfo"‘

(This is the interpolation formula of Gauss. The central differences involved remain
as near as possible to the horizontal line through the tabular value f;, comprising a
“forward zigzag.”)

[lxo + sh) = fo + sdf1)e +

23. By integrating the result of Problem 22 over appropriate intervals, obtain
the integral formulas

@ [ ey dx = 2h1fy + 3 8, — ghg 0% + 1,
(b) L:;hf(x) dx = 4h[fy + 3 % + &% 0o + -]

24. Make appropriate use of the Gauss interpolation formula of Problem 22 to
obtain, from the data given in Problem 17, approximate values of each of the
following quantities:

(a) £(28), (b) £3.2), © £30),
(@) f1(28), © [, o4, ® [} redx.

25. By retaining only second differences in the result of Problem 23(a), deduce

the formula
zo+h

f(x)dx N_(f—l ‘+' 4f0 '+'f1)
To—
[This is the celebrated formula of Simpson’s rule. Notice that since the coefficient of
the third difference in the more general formula is zero, the formula is exact when
f(x) is a cubic polynomial.)
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26. Show (as in Problem 12) that the error associated with Simpson’s rule is
approximately
W [ dif
90 (dx“)xu'
., dly

(Tt i 1 | ible_in_this f It l'd?x

evaluated instead at some unknown point between x, — 4 and x4 + A.]

27. Show that if Simpson’s rule, of Problem 25, is applied successively over the
adjacent double intervals (a,a + 2h), (a + 2h,a + 4h), ..., (b — 2h, b) in the

b
approximate evaluation of the integral fa f(x) dx, there follows

b h
f fx) dxgglfo + 4L + 26+ 45+ + 2fue + Afay + fa)

where & = (b — a)/n and n is an even integer. [This formula, often known as the
parabolic rule, is probably the most widely used formula for numerical integration.
It is exact when f(x) is a polynomial of degree not greater than three. As is suggested
by n/2 applications of the result of Problem 26, for a given interval (a,b) the error in
the approximation is nearly proportional to A* and hence to 1/n%. From this fact
it follows that if two calculations are made, one (/) with n subdivisions and one
(154) with 2n subdivisions, the error in I, may be estimated by (f, — 1,)/15.]

28. Evaluate the following integrals approximately by use of the parabolic rule,
Problem 27, first with n = 2 and then with n = 4, and compare the results with
the given rounded true values:

L dx 7 sin x
(a) —— = 0.7854, (b) | —=dx = 18518,
0 1 — X 0 X

mf2
(©) J V1 — 1sin? x dx = 1.3506.
0



CHAPTER 4

Series Solutions of Differential
Equations: Special Functions

4.1. Properties of power series. A large class of ordinary differential
equations possesses solutions expressible, over a certain interval, in terms of
power series and related series. Before investigating methods of obtaining such
solutions, we review without proof certain useful properties of power series.

An expression of the form

Ao+ Ax — X+ F Afx — X+ =D Afx—x)" (1)
n=0

1s called a power series and is defined as the limit
Y
lim A (x — x)"
N—w n=0
for those values of x for which the limit exists. For such values of x the series
is said to converge. In this chapter we suppose that the variable x and the
coefficients are real; complex power series are dealt with in Chapter 10.

To determine for what values of x the series (1) converges, we may make
use of the ratio test, which states that if the absolute value of the ratio of the
(n + Dth term to the nth term in any infinite series approaches a limit p as
n — oo, then the series converges when p << 1 and diverges when p > 1. The
test fails if p = 1. A more delicate test states that if the absolute value of the
same ratio is bounded by some number ¢ as n — 0, then the series converges
when ¢ < 1. In the case of the power series (1) we obtain

An+1

p = lim |x — Xol = L|x — X,

n—wo

n

119
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where L= lim |Ans1], )
n— o n
if the last limit exists. In this case it follows that (1) converges when
e — xol <= G)
L
and diverges when
1

Thus, when L exists and is finite, an interval of convergence

1 1
(x" A L)

is determined symmetrically about the point x,, such that inside the interval
the series converges and outside the interval it diverges. The distance 1/L is
frequently called the radius of convergence.

The behavior of the series at the end points of the interval is not determined
by the ratio test. Useful tests for investigating convergence of the two series
of constants corresponding to the end points x = x, 4 L™ are:

(1) If, at an end point, the successive terms of the series alternate in sign
for sufficiently large values of n, the series converges if after a certain stage the
successive terms always decrease in magnitude and if the nth term approaches
zero, and the series diverges if the nth term does not tend to zero.

(2) If, at an end point, the successive terms of the series are of constant
sign, and if the ratio of the (n + 1)th term to the nth term can be written in
the form "

1 —=+==,
n n
where k is independent of n and 6, is bounded as n — o, then the series
converges if k > 1 and diverges if k¥ = 1. It should be noticed that this test is
applicable even in the case when & = 1, so long as an expression of the
indicated form can be obtained. We shall refer to this test as Raabe’s test.*

As an example, we consider the series
= [1'2'3"°n](x_a)n
Lo (o + e+ 2)x +3)(x+ 1)

where « is not a negative integer. In this case we obtain
n+1

L=lm|—
a+n+1

* This very useful test is also associated with the name of Gauss The term 6,/n® can in
fact be replaced by 8./n'+?, where it is required only that p > 0 and 0, be bounded, and
still more delicate modifications exist. (See, for example, Reference 8.)
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Hence the interval of convergence is given by |x — a| < 1or
a—1<x<a+1l.

When x = a — 1, the signs of successive terms alternate when n > —a.
Apart from algebraic sign, the nth term is then

n! _niT(a+1)
@+ De+2)-@+n TIet+n+1)’

Reference to Equation (61) of Chapter 2 shows that this ratio is approxi-
mated by I'(x + 1) n~* when # is large, and hence approaches zero as n
increases only if « > 0. Thus the series converges at x =a — 1if « > 0,
and diverges at x = @ — 1 otherwise. When x = g + 1, the terms are of
constant sign when n > —a. The ratio of consecutive terms is then

n+1 : a+ a(ax + 1)
n+o4+1 n nn+a+1)°

Hence, by Raabe’s test with 6, = [x(x + Dn)/(n + « + 1), the series con-
verges at x = a + 1if « > 1 and diverges at x = @ + 1 otherwise.

It may be noticed that if L is zero, the interval of convergence includes all
values of x. However, if L is infinite, the series converges only at the point
X = x,. Whether or not the limit L exists, it is known that always, for the
power series (1), either the series converges only when x = x,, or the series
converges everywhere, or there exists a positive number R such that the series
converges when [x — x,| < R and diverges when |x — xy| > R.

It may happen that the series (1) contains only terms for which the sub-
script # is an integral multiple of an integer N > 1, and hence is of the form

Ay + Apn(x — XV + don(x — xg)* + -+ =Z Apn(x — xof*Y. (%)

Examples are afforded by the Maclaurin series for the functions cos x and
log (1 - x4)’

x2 x4 x2k
E— — — — v s = _k
cosx =1 sita zﬂ( ) 20! (x| < ),
X xI2 2\ xik
_ —xd) =yt LD L= i
log (1 — x*% Xttt + ;k (x| <D,

for which N = 2 and 4, respectively.

Insuch cases, the ratio 4,,,,/A, is undefined for infinitely many values of n.
The limiting absolute value of the ratio of successive terms is

) A .
py = lim [ZELDN |1 N — [otx — x,fY,

k- o0

kN
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A(k+1)N

; (6)

where Ly = lim
k= w0

Ary

and the series converges when L, | x — xo|¥ < 1, or

1
|x — x| < —. @),
VLy

A vparticularly useful property of power series is the fact that convergent
power series can be treated, for many purposes, in the same way as poly-
nomials. Inside its interval of convergence, a power series represents a contin-
uous function of x with continuous derivatives of all orders. Inside this interval,
a power series can be integrated or differentiated term by term, as in the case
of a polynomial, and the resultant series will converge, in the same interval, to
the integral or derivative of the function represented by the original series.
Further, two power series in x — x, can be multiplied together term by term
and the resultant series will converge to the product of the functions repre-
sented by the original series, over the common interval of convergence. A similar
statement applies to division of one series by another, provided that the de-
nominator is not zero at x,. Here the resultant series will converge to the ratio

over some subinterval of the common interval of convergence.

[« ¢]
Now suppose that the series z A,(x — x,)" converges in a nonzero
n=0
interval about x = x, and hence represents a function, say f(x), in that inter-

val,
f) =2 Anfx — xo™ ®)
n=0

Then, differentiating both sides of Equation (8) k times and setting x = x, in
the result, we obtain

f(k)(x0)=k!Ak (k=0’ 1’23--')3

and hence (8) becomes

Lm )
709 = 2 B0 e ©)

n=0

This is the so-called Taylor series expansion of f(x) near x = x,. It is clear
that not all functions possess such expansions, since, in particular, in order
that (9) be defined, all derivatives of f(x) must exist at x = x,. A function
which possesses such an expansion is said to be regular at x = x,. The above
derivation shows that if a function is regular at x = x,, it has only one
expansion in powers of x — x, and that that expansion is given by (9).
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If f(x) and all its derivatives are continuous in an interval including x = x,,
then f(x) can be expressed as a finite Taylor series plus a remainder, in the

form
N-1

(n)
fo = > LB yn 4 Ry, (10)

n=0 -

Here Ry, the remainder after N terms, is given by
(N ]
Ry =9 — o), 11

where £ is some point in the interval (x,x). To show that the expansion (9)
is valid, so that f(x) is regular at x,, we must show that Ry(x) - 0as N —
for values of x in an interval including x = Xx,. A test which is much more
easily applied and which is sufficient in the case of most functions occurring
in practice consists of determining whether the formal series in Equation (9)
converges in an interval about x = x,.

It is apparent, in particular, that any polynomial in x is regular for all x.
Further, any rational function (ratio of polynomials) is regular for all values
of x which are not zeros of the denominator.

4.2. Hlustrative examples. To illustrate the use of power series in
obtaining solutions of differential equations, we first consider the solution of
three specific linear equations of second order.

(1) To solve the differential equation

d®y
Ly=— —y=0, 12
Y=Y (12)
we assume a solution in the form
y=A0+A1x+A2x2+A3x3+A4x4+A5x5+"'

and assume that the series converges in an interval including x = 0.
Differentiating twice term by term, we then obtain

2
S_}; = 24, + 6Azx + 124,x2 + 204x% + - - - .
x
With the assumed form for y there follows
Ly = (24, — Ay) + (643 — A)x + (124, — Ay)x?
+ (2045 — A)x* 4+ -+ - =0.

In order that this equation be valid over an interval, it is necessary that the
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coefficients of all powers of x vanish independently, giving the equations
2A2 —_— Ao, 6A3 = Al’ 12A4 - Az, 20A5 = A3, c ey

from which there follows

1 A 1 A4 1 4
2 — 0 3 — ¢/ 1y — 1249 — 24710
A5 = 2loA3 = T%Al’
The solution then becomes
y=A0(1+1}x2+214x4+---)+A1(x+%x3+120x5+ )

It is seen that the coefficients 4y and 4, are undetermined, and hence arbitrary,
but that succeeding coefficients are determined in terms of them. The general
solution is thus of the form

Y = Aguy(x) + Ayus(x),

where u)(x) and u,(x) are two linearly independent solutions, expressed in
power series, of which the first three terms have been obtained. The terms
found may be recognized as the first terms of the series representing the known
solutions cosh x and sinh x, respectively.

A more compact and convenient procedure uses the summation notation
in place of writing out a certain number of terms of the series. Thus, we write
the assumed solution in the form

y =Z Ax*
k=0

and obtain, by differentiation,

By N -

— = D k(k — 14 x*"%

o kZ:o (k — DAx
There then follows

Ly = kik— DAg*™ — > Ax*=0.
k=0 k=0

In order to collect the coefficients of like powers of x, we next change the
indices of summation in such a way that the exponents of x in the two summa-
tions are equal. For this purpose we may, for example, replace K by k — 2 in
the second summation, so that it becomes

ZAkzx Ei Ap— "7

and hence

Ly =) kik — DA™ — D 4, _x"2 =0,
k=0 k=2
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Since the first two terms (k = 0, 1) of the first summation are zero, we may
replace the lower limit by &k = 2 and then combine the summations to obtain

Ly = [k(k — 1)dy — Ap_g]x*"% = 0.

k=2

Equating to zero the coefficients of all powers of x involved in this sum, we
have the condition

k(k — DA, = A,, (k=2,3,...).

This condition is known as the recurrence formula for A,. It expresses each
coefficient 4, for which k = 2 as a multiple of the second preceding coefficient
A, _,, and reduces to the previously determined conditions when k = 2, 3, 4,
and 5.

(2) As a second example we consider the equation

LyEx2%+(x2+x)Z—i)—y=0. (13)

Assuming a solution of the form

y =i A,
k=0

o] a2 =]
W_>kapt, LS k- npages,
dx < dx* =3

k=0

we obtain

and hence
Ly = k(k — DAx* + D k A4** 4 D k Ak — > A
k=0 k=0 k=0 k=0

The first, third, and fourth summations may be combined to give

D [k — 1) + k — 1Ak = > (& — 1)4,x%,

k=0 k=0
and hence there follows

Ly = (k* — DAp* + > k A+,
k=0

k=0

In order to combine these sums, we replace k by &£ — 1 in the second, to
obtain
Ly= (K — Dt + > (k — 1)d,_px*
k=0 k=1

Since the ranges of summation differ, the term corresponding to ¥ = 0 must



126 Series solutions of differential equations | chap. 4

be extracted from the first sum, after which the remainder of the first sum can
be combined with the second. In this way we find

Ly = —Ag+ D [(k — Dy + (k — Dy i]5"

In order that Ly may vanish identically, the constant term, as well as the
coefficients of the successive powers of x, must vanish independently, giving
the condition

Ay=0
and the recurrence formula

(k— Dtk + DA, + 4,1 =0 (k=1,2,3,..)).

The recurrence formula is automatically satisfied when k = 1. When k = 2,
it becomes

A
A, = kel § k=2,3’4’
x PR ( )
Hence, we obtain
A2=_i4_13 A3=_i4;2=_—1, A4=-—-é=—— Al ,
3 4 3-4 5 3-4-5

Thus, in this case 4y = 0, A4, is arbitrary, and all succeeding coefficients are
determined in terms of A4,. The solution becomes

2 3 4
— 4 (x_l x X )
=4 3734 3457
If this solution is put in the form
2A1(Jrc2 x2 xt x® )
= D
Y x \2t 3t 4! 5!+

2A1[ ( x ox2 X xt )}
s =X x x|,
X + 1!+2! 3!+4!

the series in parentheses in the final form is recognized as the expansion of e,
and, writing 24, = ¢, the solution obtained may be put in the closed form

y:C(e_ —l—i—x).
X

In this case only one solution was obtained. This fact indicates that any
linearly independent solution cannot be expanded in power series near x = 0;
that is, it is not regular at x = 0. Although a second solution could be obtained
by the method of Section 1.10, an alternative procedure given in a following
section is somewhat more easily applied.
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(3) As a final example we consider the equation

2
Ly=x*%2 4y (14)
dx?
Again assuming a solution of the form
)’==:E:Akxh
k=0

we obtain
Ly =) kik — DA™ + > Ak,
k=0 k=0
Replacing k by k — 1 in the first sum, there follows
Ly = (k— )k — 24, x* + > A,x*
k=1 k=0

[ + (k — 1)(k — 2) A, ]x*

=1

k

The condition L y = 0 then requires that
Ay=0
and that the succeeding coefficients satisfy the recurrence formula
A, = —(k — )k — 2A4,_, k=12...).

For k =1 and k = 2, the recurrence formula gives 4; = 4, = 0; and since,
from this point, the remaining conditions express each 4 as a multiple of the
preceding one, it follows that all the 4’s must be zero. Hence the only solution
obtained is the trivial one y = 0. It thus follows that the equation possesses no
nontrivial solutions which are regular at x = 0.

Next we proceed to a classification of types of linear differential equations
of second order, and to a study of the basic differences among the three
problems so far considered.

4.3. Singular points of linear second-order differential equations. 1f a
homogeneous second-order linear differential equation is written in the
standard form

Ly
dx?
the behavior of solutions of the equation near a point x = x, is found to

depend upon the behavior of the coefficients a;(x) and a,(x) near x = x,. The
point x = Xx, is said to be an ordinary point of the differential equation if both

+ a0 4 ax)y =0, (15)
dx
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a,(x) and a,(x) are regular at x = x,, that is, if ¢, and a, can be expanded in
power series in an interval including x = x,. Otherwise, the point x = x; is
said to be a singular point of the differential equation. In such a case, if the
products (x — xg)a,(x) and (x — x)%ax(x) are both regular at x = x,, the
point x = Xx, is said to be a regular singular point; otherwise, the point is called

an irregular singular point.

In illustration, we notice that for the first differential equation of the
preceding section, a;(x) = 0 and ay(x) = —1. Thus all points are ordinary
points. In the second example the coefficients a;(x) = 1 4+ xand @y(x) = —x2
cannot be expanded in powers of x but can be expanded in power series near
any other point x = x,. Thus the point x = 0 is the only singular point. Since
the products xa,(x) = x + 1 and x2a,(x) = —1 are regular at x = 0, it follows
that the point is a regular singular point. In the third case the point x = 0 is
readily seen to be an irregular singular point. Similarly, for the equation

2
x3(1 — x)2d—y — 2x%1 — x)i)—) + 3y =0,
dx? dx
it can be verified that x = 0 is an irregular singular point and x =11is a
regular singular point. All other points are ordinary points.

When the coefficients a,(x) and a,(x) in the standard form (15) are ratios
of polynomials, singular points can occur only when a denominator is zero,
so that, unless the numerator also vanishes there, the corresponding coefficient
is not finite. Most of the equations considered in this text will be of this type.

However, a singular point also may occur when a;(x) or a,(x) becomes
infinite in some other way, or even in the absence of such behavior. For
example, if a,(x) = (x — 1)%/3, it is seen that aj(x) becomes infinite as x — 1,
so that a,(x) cannot be expanded in a series of powers of x — 1. Since the
function (x — 1)a,(x) = (x — 1)7/% also has the same property, it follows that
the differential equation (15) has, in fact, an irregular singular point at x = 1
when a,(x) = (x — 1)%3.

It will be shown that if x = xyis an ordinary point of (15), then the equation
possesses two linearly independent solutions which are regular at x = x,, and

hence are both expressible in the form Z A(x — xo)*. If x = x4 is a regular
k=0
singular point of (15), it will be shown that the equation does not necessarily

possess any nontrivial solution which is regular near x = x,, but that at least
one solution exists of the form

y = (x — Xo)° Z A(x — x,),
k=0

where s is a determinable number which may be real or complex. Such a
solution is regular at x = x, only if 5 is zero or a positive integer. If x = x; is
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an irregular singular point of (15), the problem is more involved; a nontrivial
regular solution may or may not exist.
In illustration, the equation

2
23y (1+2)

has an irregular singular point at x = 0. The general solution is
Y= + ey

thus, the solution y = constant is the only solution regular at x = 0. The
equation

x“a;)—;+2x3j—z+y=0

also has an irregular singular point at x =0 and has the general solution

. 1
y = c13ml + ¢y cos —.

x x
It follows from the nature of these functions that this equation has neither a
nontrivial regular solution at x = 0 nor a solution expressible in the form

y=x’;Akx".

4.4. The method of Frobenius. In this section we restrict attention to
solutions valid in the neighborhood of the point x = 0. Solutions valid near
a more general point x = x, may be obtained in an analogous way, although
for this purpose it is frequently more convenient first to replace x — x, by a
new variable ¢ and then to determine solutions of the transformed differential
equation near the point t = 0.

In place of reducing a second-order linear equation to the standard form
(15), it is frequently more convenient to use a form which is, to some extent,
cleared of fractions, particularly if a,(x) or a,(x) is the ratio of two polynomials.
For this reason, to investigate solutions valid near x = 0, we suppose that the
equation has been put in the form

Ly—R(x)—+ P() + Q(X)y—O (16)

where R(x) does not vanish in some interval mcludmg x = 0. We also suppose
that P(x), Q(x), and R(x) are regular at x = 0. Then, with the notation of (15),
the products

P(x) o(x)

xa,(x) = — and x%a,(x) = e

R(x)
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are regular at x = 0, and this point is either an ordinary point or, at worst, a
regular singular point.

It is convenient to suppose also that the original equation has been divided
through by a suitable constant so that R(0) = 1. Then we may write

} 5 T D1 P .. 1 P2
X)) =T T (X T X 1 ,
O(x) = Qy + O1x + QX + -+, (17)

Rx) =1+ Rx + Ryx* 4 -+,

the series converging in some interval including x = 0.
We attempt to find nontrivial solutions which are in the form of a power
series in x multiplied by a power of x,

w0
y=x' D At = A + A 4 AR g (18)
k=0
where s is to be determined. The number A4, is now, by assumption, the co-

efficient of the first term in the series, and hence must not vanish. Substitution
into the left-hand member of (16) then gives*

Ly=(1+4 Rx + Royx®2 + ++) X [s(s — 1)Apx*2
+ (s + DsAx* 1 + (s + 2)(s + DAzx® 4+ -« ¢]
+ (Py + Pix + Pox® + + - ) X [s4ex* 2 + (s + 1A, x*!
+ (s + DAgx + -+ ]
F+(Qo + O1x + @ox® 4+ ) X [AgX* 2 4 Apx* ™1 + Apx* + - -],

or, multiplying term by term and collecting the coefficients of successive
powers of x,

Ly = [s(s — 1) + Pos + Qoldex*2 + {[(s + )s + Po(s + 1) + Qol4,
+ [Rys(s — 1) + Pys + Qyldo}x*
+ {l(s + 2)(s + 1) + Po(s + 2) + QolA,
+ [Ry(s + Ds + Py(s + 1) + G114,
+ [Ros(s — 1) + Pos + Qpldg}x* + -+, (19)
Equation (19) can be put in a convenient form in terms of the functions

SO =s6—1)+Ps+ Q=3+ (P— 1)s + O (20)
and
g2.8)=R(s—n)(s—n—1)+P,(s—n)+ O,

= Rn(s - n)2 + (Pn - Rn)(s - n) + Qn' (21)

* A more compact development is obtained by using summation notation.
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With the notation of (20) and (21), Equation (19) then becomes
Ly =f(s) onS_2 + [fG+ DA, + gi(s + I)Ao]xs_l

+ [f(s + 2)4, + gi1(s + 2)4; + g.(s + 2)4,]x° + -
-

n=1

<y 7
+ Lf(s + KA+ 2, g5 + k)Ak-,,Jx“’*—z +o. (2

In order that (16) be satisfied in an interval including x = 0, this expression
must vanish identically, in the sense that the coefficients of all powers of x in
(22) must vanish independently. The vanishing of the coefficient of the lowest
power x*~2 gives the requirement

f&) =0 or s+ (Py— s+ Qy=0. (23)

This equation determines two values of s (which may however be equal) and
is called the indicial equation. The two values of s, which give the exponents
of the leading terms of two series of the form (18), are called the exponents of
the differential equation at x = 0.

For each such value of s, the vanishing of the coefficient of x*~! in (22)
gives the requirement

J(s + DA, = —gi(s + 1A,

and hence determines 4, in terms of A, if f(s + 1) 7 0. Next, the vanishing
of the coefficient of x* in (22) determines A, in terms of A4, and A,,

Ss + A, = —g1(5 + 2)4, — 82(5 + 2)A,,

and hence in terms of Ay, if f(s 4 2) £ 0.
In general, the vanishing of the coefficient of x*+*~2 in Equation (22) gives
the recurrence formula

k
[+ BAe= =D gls + Dgen (k= 1), (24)
n=1

which determines each 4, in terms of the preceding 4’s, and hence in terms of
Ay, if for each k the quantity f(s + k) is not zero.

Thus, if two distinct values of s are determined by (23), and if for each such
value of s the quantity f(s + k) is never zero for any positive integer k, the
coefficients of two series of the form (18) are determined and these series are
solutions of (16) in their interval of convergence. We next investigate the
exceptional cases.

Let the roots of Equation (23) be s = s, and s = s,, where

1 — P,
2

1 — P,
2

5 =

+ 2V = P — 2Q,
2 (25)

So =

— >V = Py — 40,
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The first exceptional case is then the case when the exponents s; and s, are
equal,
(1 - P0)2 - 4Q0 — 0. (26)

In this case only one solution of the form (18) can be obtained.

Now suppose that the two exponents are distinct. The second exceptional
case may then arise if f(s; 4 k) or f(s, + k) vanishes for a positive integral
value of k, say k = K, so that (24) cannot be solved for the coefficient 4. With
the notation of (25), we have

J(&) = (s — s1)(5 — 5p),
fs+ k) =(+k—s)s+k—s),

from which there follows

fer+K)=kk + (=5, fla+k)=klk—(5—s)]l. (27

If s, is imaginary and the coefficients P,, Q,, and R, are all real, then s, is the
conjugate complex number. Hence, in this case s; — s, is imaginary and the
expressions in (27) cannot vanish for any real values of k except k = 0. Next
suppose that s, and s, are rea/ and distinct and that s; > s,. Then, since
sy — 8, > 0, it follows that f(s, 4 k) cannot vanish for k = 1 and that f(s, + k)
can vanish only when k = s5; — s,. Since k may take on only positive integral
values, this condition is possible only if s, — s, is a positive integer. If s, = s,,
then f(s, + k) = k% and hence f(s, + k) cannot vanish when k = 1.

We thus see that if the two exponents s, and s, do not differ by zero or a
positive integer, two distinct solutions of type (18) are obtained. If the exponents
are equal, one such solution is obtained; whereas if the exponents differ by a
positive integer, a solution of type (18) corresponding to the larger exponent is
obtained.

It is known (see, for example, Reference 5 of Chapter 1) that the interval
of convergence of each series so obtained is at least the largest interval, centered
at x = 0, inside which the expansions of xa,(x) and x%ay(x) in powers of x both
converge, with the natural understanding that the point x = 0 itself must be
excluded when the exponent (s, or s,) is negative or has a negative real part.

and hence

When x is complex, each infinite series converges to a solution in a
circle in the complex plane, with center at the origin and radius at least
the distance to the nearest singularity of a,(x) or a,(x), and with the center
deleted when necessary. The solution then is said to have a pole at the
origin when the associated exponent is a negative integer, and a branch
point at the origin when the exponent is nonintegral, as well as in the
exceptional cases (Section 4.5) when the function log x is involved (see
Chapter 10).
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Ifs, — s, = K, where K is a positive integer, then when k = K the recurrence
formula (24) becomes

K
(6= 56— s+ KiAx = =2 g5+ Kdx_pe  (8)
n=1

Thus, as we have seen, the left member vanishes when s = s,, and the equation
cannot be satisfied by any value of A4, unless it happens that the right member
is also zero, in which case the coefficient A, is undetermined, and hence
arbitrary. If this condition exists, a solution of type (18) is then obtained,
corresponding to the smaller exponent s,, which contains two arbitrary constants
Ay and Ay, and hence is the complete solution. Thus we conclude that if the
exponents differ by a positive integer, either no solution of type (18) is obtained
for the smaller exponent or two independent solutions are obtained. In the
latter case the two solutions so obtained must then include the solution
corresponding to the larger exponent as the coefficient of A,..

[t is important to notice that this is the situation, for example, when x = 0
is an ordinary point. For in this case one has Py = Qp = @, = 0, and hence
si=1,8 =0,and K =5, — s, = 1. Thus Equation (28) here becomes

s + DA, = —gi(s + 1A,
= —[R;s® + (P, — R)s)A4,

= —s[Rys + (P, — RD]A,,

and when s = 5, = 0 the recurrence formula is identically satisfied, leaving 4,
as well as A4, arbitrary. Thus, when x = 0 is an ordinary point, two linearly
independent solutions which are regular at x = 0 are obtained.

The preceding detailed derivation was intended for the purpose of in-
vestigating the existence of series solutions of the assumed type. Although the
formulas obtained can be used directly for the determination of the coefficients,
once the functions f(s), g,(s), g.(s), . . . are identified, it is suggested instead
that the indicial equation and the recurrence formulas be obtained in actual
practice by direct substitution of the assumed series into the differential
equation, written in any convenient form.

To illustrate the application of the preceding treatment, we consider again
the second example, Equation (13), of Section 4.2. We thus seek solutions of
the equation

d? d
LyExzd—:;-—l—(x2+x)-d—i-—-y=0

of the form
o0

y=x* i At =Z A x*re,
k=0 k

=0
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By direct substitution, there follows

Ly = (s — DA+ {[(s + b — 114, + (s + k — DA, }x**.

k=1

—Hence the-indicial equation-is
and the recurrence formula is
(s +k)2—1]4, + (s +k—DA_, =0
or s+k—Dls+k+DA, +4,,]=0 (k=1).

The exponents s, and s, are +1 and —1, respectively. Since they differ by an
integer, a solution of the required type is assured only when s has the larger

value +1.
With s = 41, the recurrence formula becomes

kl(k + 24, + A,4]1 =0,

s2—1=0

or, since k £ 0,

Ax—y
A =— "= k= 1)
g k+2 ( )
Thus, one has
A A
A:——O, ..—..-—0’ A=— 0 R .
! 3 27 3.4 ’ 3:-4-5

X X
3 3-4 3-4-5

in accordance with the result obtained previously.
With s = —1, the recurrence formula becomes

(k— 2k A4, + A4, ) =0 (k= 1).

It is important to notice that the factor k — 2 cannot be canceled except on
the understanding that k 7 2. That is, when k = 2, the correct form of the
recurrence formula is 0 = 0. If k = 1, there follows

If k = 2, the recurrence formula is identically satisfied, so that A4, is arbitrary.
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If k = 3, the recurrence formula can be written in the form

A4, — -Lr (23
k
If we take A, = 0, then there follows A; = A, = - - - = 0, and the solution
corresponding to s = —1 becomes simply

y:x_l(Ao_on)onl — =

The general solution of the given equation is then a linear combination of
the two solutions so obtained, and hence can be taken conveniently in the form
e —1+4+x 1 — x

y=aq +C2 ’
X X

or, alternatively,
e~ 1 —x
X

X

where C, = ¢,, and C, = ¢, — ¢;. The only solution regular at x = 0 is the
one formerly obtained,

It can be verified that if A, is left arbitrary, the solution corresponding to
the exponent —1 is the sum of 4, times the two-term solution obtained and A4,
times the infinite series solution corresponding to the exponent +1.

4.5. Treatment of exceptional cases.* We consider first the case of equal
exponents, and attempt to determine a second solution which is independent
of the one obtained by the method of Frobenius. Although this result could be
accomplished by the methods of Section 1.10, the method to be given is
usually more easily applied.

In place of first introducing the value of the repeated exponent s, into the
recurrence formula (24) and determining A,, A,,..., A, ... directly in
terms of A, we suppose that the coefficients 4,, 4,,..., A4,, ... are expressed,
by the recurrence formula, in terms of A, and s. We indicate this fact by writing
Ay = Ay(5), Ay = Ay(s), . ... With these values of the A’s, as functions of s,
a function y depending upon s as well as x is determined and denoted by y(x),

2(x) = x* D A5t (29)
k=0

* Sections 4.5 and 4.6, together with the derivation of the series for Yy(x) in Section 4.8,
can be omitted without logical difficulty. However, in this event a consideration of the
last paragraph of Section 4.5 is suggested.
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Reference to Equation (22) shows that satisfaction of the recurrence formula,
for k = 1, brings about vanishing of all terms in (22) except the first, and so
there follows

Ly (x) = Ay f(s)x*2, (30)

Ly (x) = Aos — 5,)°x*2. €2))

The fact that the right member of (31) vanishes when s = s, is in accordance
with the known fact that (29) is a solution of (16), say y,(x), when s = s,.
However, since s = s, is a double root of the right member of (31), it follows
also that the result of differentiating either member of (31) with respect to s
(holding x constant),

g—sLys(x) — Agf20s — 5p) + (s — 5, log x]x"2,

: d
is zero when s = s,. But, since the operator — and the linear operator L are

commutative, there then follows also ds
[3 L ys(x):| —L [Ql’-(—")} —0. (32)
s §=81 ds s=g
Hence a second solution of (16), when s, = s,, is of the form
ay,
) = | 222 (3
\) s=s51

The second exceptional case is that in which the exponents differ by a
positive integer K,
S]. - S2 = K g l,

but where the recurrence formula is not identically satisfied when & = K and
§ = 8y, that is, when the right member of (28) does not vanish when s = s,.
Insucha case, Equation (28) can besatisfied onlyif 4g=A, =+ =Ax_; =0,
and hence Equation (16) does not possess a solution of type (18) beginning
with a term of the form Ayx":.

In this case we suppose again that the recurrence formula is satisfied when
k = 1 for all values of s, so that with the A’s expressed in terms of 4, and s,
we again define a function y(x) of type (29). In this case, however, it is clear
from (28) and from the nature of the recurrence formula (24) that the expres-
sions for the coefficients A (s), A;-,,(5), . . ., will now all have a factor s — s,
in a denominator, and hence will not approach finite limits as s — 5,. If we
consider the product (s — s,) y(x), we see that as s — s, terms with coefficients
A, for which k < K will vanish and the remaining terms will approach finite
limits, thus giving rise to an infinite series of powers of x starting with a term
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involving x*:*¥ = x*. Thus the limiting series must be proportional to the
series for which s = s,. In this case, however, since again satisfaction of the
recurrence formula for k = 1 causes all terms of (22) excgpt the first to vanish,
we have

L (s — s9) yi(x) = Ag(s — s)™s — 5,)x* 2. (34)

But since the right member has a double root s = s,, the partial derivative of
either member must vanish as s — s,, and, by an argument similar to that
leading to (32), we conclude that

L{g—s [6— s peol| =0

3=35g
so that the function

0
i) = {2 16— s 700 69)
is a solution of (16), in addition to the solution y,(x) = [ ys(x)],=,1correspond-
ing to the larger exponent s,.
From Equations (29) and (33) it follows that when s, = s, the second

solution y, is expressible as

ye(x) = [Z Ak(sl)xk+81J log x +Z A(spx T, (36)
k=0 k=90

and the coefficient of log x is seen to be y,(x). Further, when s, and s, differ
by a positive integer but there is no Frobenius series solution with 5 = s,,
Equations (29) and (35) show that the missing solution y, is expressible as

ya(x) = [z (s — Sz)Ak(S)ka:' log x
k=0

8=

82

2L — A s ()
k=0 \) s=

The coefficient of log x is lim [(s — s,)y(x)], which has been seen to be pro-
portional to y,(x). 870

Hence it follows that, in all cases when the differential equation, having
x = 0 as a regular singular point with exponents s, and s,, possesses only one
solution

y1(x) 22 AT = Aguy(x)
k=0

of the form (18), any independent solution is of the form
B kxk+sg (38)

0

yo(x) = Cuy(x) log x +
k
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where C is a constant. Thus, in place of using the results of Equations (33) or
(35) in such cases, a second solution may be obtained by directly assuming a
solution of this last form and by determining the necessary relationships between
the coefficients B, and an arbitrarily chosen constant C # 0.

4.6. Example of an exceptional case. To illustrate the procedures
developed in the preceding section, we consider the equation

d®y
Ly=x=—=2—y=0. 39
y=x-5-Y (39)
With the notation
Y0 = A+, (40)
k=0

there follows

Ly, =s(s — 1)Ayx*? +Z [(k+ sk + s — DA, — A, JxF*L

k=1
Hence we obtain the recurrence formula
(kK +8)k+5s— DA, = A, k=1 41)

and the two indices
5 =1, s, = 0. (42)
Since the indices differ by unity, a solution of the form (40) is assured only for
s=1.
From (41) there follows
A=t gm0
(s + 1)s (s + 2)(s + 1)

and in general, by inductive reasoning,

A
A (s) = 2 k = 2). 43
O = o D Gr ol K2 “
The solution for which s = s, = 1 then becomes
o k+1
PO = Ay D = = Ay (¥). (44)

Lk + 1) k!

However, since A,(s) — o0 when s — 0, for all k = 1, there is indeed no
solution of type (40) for which s = 0.

In order to obtain a second solution, we may refer to Equation (37). The
coefficient of log x is seen to be

o0 <0 k
5A(5)],—ox* = A4 —x
,Zo[ (amo o;k!(k_l)!
& xk+1

= Agy(x), (45)
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d [sA4,(5)]

ds ’
involved in the second series of Equation (37), is conveniently evaluated by
logarithmic differentiation in the form

when account is taken of the vanishing of (sA4y),_o. The coefficient

s—I—k Zs—l—m
s+ K+ k—1)--(s+ 1)]2

and hence there follows

£ [sa,] = —

4 k) + gk — 1)
! Is [sAk(s)]}s=0 = PYTEY A, (k=2), (46)

with the abbreviation

S | 1,1 1 3
)= Z:;a 4o+t k=120 (4
0 (k=0)

It is found by direct calculation that Equation (46) also holds for &k = 1,
whereas the right-hand member must be replaced by 4, when & = 0. Hence
(37) gives

yao(x) = A0|:u1(x) logx + 1 — K (k — 1)1

or, in expanded form,
Yo(x) = Ag[(x +5x2+ Hx3 +--)logx +(1 —x—5x* — &x3 —--)].

The alternative procedure described at the end of the preceding section
consists of substituting the relation of Equation (38) in the form

k=1

[+ o]

7o(x) = Cuy(x) log x + > Byx* (49)
k=0
directly into (39), to obtain the condition

d*u du 1
(SRR
xdx2 u, gx + . Uy

X
+ D [(k + Dk Byyy — B =0, (50)
k=0

Since u, satisfies Equation (39), the coefficient of log x in (50) vanishes, and
the introduction of (45) reduces (50) to the form

Z[(k+1)k3k+1 Bk]x+c2[k,)2 (Hll)!ijk:o
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The requirement that the coefficient of the general power x* vanish becomes

(k+ 1)kB,,,—B,=— —2*tL ¢ (=0

(k + 1! k! B
By setting k successively equal to 0, 1, 2, . .., we obtain

Bo = C, Bz = %31 - %C, Ba = }231 ‘“ aleC,

Here both B, and C are arbitrary and all the other coefficients are expressible
in terms of these two constants, yielding the solution (49) in the form

Yo(x) = Cl(x + 3x® + Hx3 4 --)logx + (1 — §x2 — Fx® 4 -+ 9)]
+ By(x +3x* + AHx* +00). (5])

The coefficient of B, is seen to be w,(x). Thus, if C and B, are left as
arbitrary constants, this expression for y,(x) in fact represents the general
solution of (39). The particular expression for y, obtained in (48), by the first
method, is obtained from (51) by choosing C = —B, = A,.

4.7. A particular class of equations. Many important second-order
equations, of frequent occurrence in practice, can be obtained by specializing
the constants in the equation

d 1
(1 + Ryyx M)——+ (P + Pyx M)d—i’+;(Qo+QMxM)y=o, (52)

where M is a positive integer. (In the case when M = 0, the equation is equi-
dimensional.) Here the introduction of the assumption

y(x) = Z Apx*te (53)

leads to the condition

Z £(5 + R) A2 4 Z [f(s + KMy + g(s + K) A p]x"**"2 = 0,

k= A1

where

& =5+ (P~ 1Ds + O
and g8() =gu(s) = Rp(s — M + (Ppr — Rp)(s — M) + Q.

Thus, for each exponent satisfying the indicial equation f(s) = 0, the
recurrence formula is

fs+8A, =0 (k=1,2,...,M—1),
S+ Ay = —gls + DAy (k= M).
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The first M — 1 conditions are satisfied by taking
A=Ay == Ay, =0,

after which the recurrence formula for k = M shows that all coefficients A,
for which k is not an integral multiple of M can be taken to be zero.

Accordingly, it is convenient to write

Y(x) = BxMits (54)
k=0

when seeking a solution of a special case of Equation (52). Here k has been
replaced by Mk in (53) and B, has been written for A ,y,.

Further, it is seen that here an exceptional case can occur only when the
exponents s, and s, are equal or when s, — s, = KM, where K is a positive
integer. In such a situation, when only one solution of type (54) is obtained,
a second solution can be found, as usual, by use of Equations (33) or (35).

Since the expansion of (1 + R,,x¥)~! converges when

x| < Ry ~1H, (55)

the solutions obtained for (52) also will converge in that interval. In particular,
if R,y = 0 the series will converge for all finite values of x (the value x =0
itself being excepted, as usual, when the real part of s is negative).
Among the many important specializations of Equation (52), we note
Bessel’s equation,
d2
2
dx?

for which M = 2; Legendre’s equation,

— + x + (x* — pPy =0, (56)

d? d
(1—wx2);1—;§—~zxﬁ+p(p+1)y=o, (57)

for which M = 2; and Gauss’s equation,

X(l—X)—+[7—(“+ﬁ+1)x]——aﬂy—0 (58)

for which M = 1. The solutions of these equations, in the neighborhood of
x = 0, are studied in the following sections.
Other notable special cases may be listed as follows.

(1) The equation

d2
x—+(c—~x)————ay=0 (59)
dx?

for which M =1, is satisfied by the confluent hypergeometric function of
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Kummer, y = M(a,c,x) (see Problem 8). If c = 1 and a = —n, where n is a
positive integer or zero, one solution is the nth Laguerre polynomial, y = L,(x).
If c =m + 1 and a = m — n, where m and n are integral, one solution is the

associated Laguerre polynomial,

Tmys Y dm : 4 £ h
y = L(x) = —— L,(»),
X
if m= n.
(2) The equation
d*y dy
— — 2x—= + 2ny =0, 60
dx? dx +any (%0)

for which M =2, is satisfied by the nth Hermite polynomial, y = H (x),
when n is a positive integer or zero.
(3) The equation
dy  dy

1 — x¥)— — x= + n?y =0, 61

( ) T ™ y (61)
for which M = 2, is satisfied by the nth Chebyshev polynomial, y = T,(x),
when # is a positive integer or zero.

(4) The equation
d*y dy
x(1 —x) = + [@a — (1 + b)x] == + n(b + n)y = 0, (62)
dx dx

for which M = 1, is satisfied by the nth Jacobi polynomial, y = J,(a,b,x),
when # is a postive integer or zero.

The functions mentioned are useful in many applications. It is a curious
fact that they all satisfy equations which are special cases of (52).

4.8. Bessel functions. Solutions of the differential equation

d’  _dy
2 = —= 4+ (x2— pYy =0, 63
st (x*— P (63)
or, equivalently,
e L (x D) g2 - gy =0, (632)
dx\ dx

are known as Bessel functions of order p. These functions are of frequent use in
the solution of many types of potential problems involving circular cylindrical
boundaries, as well as in other applications, in such fields as elasticity, fluid
flow, electrical field theory, and aerodynamic flutter analysis. We suppose that
the constant p is real. Since only the quantity p? appears in Equation (63), we
may also consider p to be nonnegative without loss of generality.
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Since Equation (63) is of type (52), with M = 2, we may seek a solution of
the form (54),

y(x) = D Byx®*e (64)
k=0
Substitution into (63) yields the indices
Sl = p, 32 = _p (65)
and the recurrence formula
(s 4 2k + p)(s — 2k — p)B, = —B;_,; (k= 1). (66)

The exceptional cases may arise only if 5, — s, = 2p is zero or an integral
multiple of M = 2, that is, if p is zero or a positive integer. In such cases we
can be certain only of one solution of type (64).
In correspondence with the exponent s, = p, repeated use of Equation (66)
gives
| By
(2 + 2pX4 + 2p) - - - (2k + 2p) 2*k!

1 B,
(1 + p)2 + p)- - - (k + p) 2%k!

and we see that all coefficients B, are defined. Thus a series of type (64) is
determined, for s = p, in the form

_ ( l)k 2k+p ]
$() [ +Z(, + P2+ p) - (k + p)2¥*kt]

or, making use of Equation (52), Chapter 2,

B,(p) = (—DF

= (1) k=1, (67

l)k 2k+p

22"k' Nk+p+ 1

This result is put into a more compact form if we use the abbreviation
Itk +p + 1) = (k 4 p)! and write

N kf 2k+p
2. ])(z)

= 27 T(1 B — B )
(%) (1 + p) Z; T Bt (68)

The series multiplying 2” I'(1 + p)B, in Equation (68) is known as the
Bessel function of the first kind, of order p, and is denoted by J (x),

m (_1)k(_}£)2k+n

2
J,(%) =Zo T (69)

»(x) = ByT(1 + p) Z
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In particular, when p = 0 and 1 we obtain the series in the forms

x4 x8

2RIR 2831

2
Jo(x)=1—§2+ 4., (70)

A A + . (71)

W =35 = ot o e

2
With s = s, = —p, Equation (66) yields the result of replacing p by —p
in (67),

By(—p) = (— 1) L Bo

(1 —p)2—p): - (k— p) 2%k!

Thus, if p is a positive integer, all coefficients B, for which k = p become
infinite, and no Frobenius solution is obtained, in such a case, corresponding
to the exponent s = —p. However, if p is not zero or a positive integer, a
second solution is obtained by replacing p by —p in the first solution, and
hence may be taken in the form
el 2k—p
o 17 (3)

J (%) =Z T (73)

kz1). (72

Thus, if p is not zero or a positive integer, the complete solution of Bessel’s
equation (63) is a linear combination of the solutions (69) and (73), of the form

y = C'1 Jp(x) + C2 J—p(x)' (74)

If p =0, the two solutions are identical. Moreover, if p is a positive integer,
the second solution J_ (x) is not independent of J (x). This statement is a

in

consequence of the fact that if p is a positive integer n, the factor
(73) is zero when k < n, and hence (73) is then equivalent to

. (_l)k(f)zk_n
T =2, (k!)(kz— !

k=n

(k — n)!

or, replacing the index k by k + n,
) (_1)k+n(£)2k+n

J (%) =z 2

& k! (k + n)!

Hence, if n is an integer, we obtain

J_n(x) = (=)' (x). (75)
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It should be noticed that although the higher coefficients in the solution
ya(x) would become infiniteas p - n(n =1, 2, 3, . . .) if the coefficient B,
were held fixed, we have essentially replaced By by a factor proportional to
1/T'(1 — p) which vanishes as p — n and so have obtained a solution J_,(x)
in which the coefficients which prevnously became infinite as p — n now

approach finite limits, and the remaining coefficients tend to zero.

To find a second solution complementing J ,(x) in the exceptional cases,
recourse may be had to the methods of Section 4.5. We illustrate the procedure
in the case of equal exponents, p = 0. In this case we obtain a function y(x)
by determining B,(s) from (66) and introducing the result into (64). The
required second solution is then

ya(x) = [%1.:0’

where here

Yix) =D Bisx®+,
k=0

so that

ye) = L B(0) x”‘} log x + , Bi(0) x*. (76)
=0 k=1

The recurrence formula (66) first gives
B,
[(s+2)s +4)- - (s + 20]*

To calculate B;(s) it is convenient first to take the logarithm of the two sides
of the equation,

log [(—l)k %’]

B(s) = (—1)*

H

—2log[(s +2)(s + 4) - - - (s + 2K)]

k
= —2 Z log (s + 2m).

m=1
Differentiation with respect to s then gives

k

B _ _,
B,(s) s+ 2m
and hence
BO) _ _, S _ S 1
B,(0) oy 2m mey m
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Thus, if we again introduce the abbreviation

k 1 1 1
e S LT N
@0) =0
we obtain
' _ —_ — —1) BO
By(0) = — @(k)B,(0) @(k) l:( D [2:4-6--- (Zk)]z]
 (=Dre(k)
22Uk

and (76) then gives the required second solution in the case p = 0 in the form

N

(k1)?

7o) = Bo[Jo(x) log x +Z( 11k

The coefficient of B, is thus a second solution of Bessel’s equation (63)

when p = 0,
2

x Y

dx?

It was taken as the standard form of the second solution by Newumann, and is

usually denoted by Y (¥(x). Thus any linear combination of Jy(x) and Y ‘9(x)is

also a solution. The standard form chosen by Weber is defined in terms of J,

and Y@ by the equation

2
Yolx) == [YO0) + (v — log 2) Jo(x)], (78)
where y is Euler’s constant, defined by the relation

y = lim [g(k) — log k]

+d—y+xy=0.
dx

k=
= lim(l +1+1+---+1—1ogk) = 05772157.... (79
ko 2 3 k

We thus obtain a second solution in the form

o BN

Yo(%) =;r2- (log S+ y)Jo(x) +k2)( 1y**1o(k) )
= ,% (l°g; + ”)J"( )+ {2: 24:24!)2(1 i %)

+ 26(’;6!)2(1 + % + %) — - }] (80)
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The function Yy(x) is known as Weber’s Bessel function of the second kind,
of order zero. In German texts it is frequently denoted by Ny(x). The complete
solution can thus be written in the form

¥y = CyJo(x) + Cp Yo(x). (81)

Weber’s definition of the function of the second kind [Equation (78)] is
generally more convenient than that of Neumann, and is usually preferred,
because of the fact that the behavior of the function Yy (x) so defined, for large
values of x, is more nearly comparable with the behavior of Jy(x) [see Equation
(88)].

A similar but more involved calculation leads to expressions for Weber’s
form of the Bessel functions of the second kind, of order n,

Pl (E)M

Yo(x) = I:(log +7) JulX) —

(E)Wci'n _|
L1 N
2 2 — 1Y (k) + gk + n)] P (82)

when n is a positive integer. Thus, in particular,

=) - -3 LD 2
_ {(1 + 3+ ;1 + 3+ &)} 25;!53! 4 - ] (83)

It follows that if p = n, where n is zero or a positive integer, the general
solution of (63) can be taken in the form

y = CuJu(x) + C, Yo (x). (84)

If pis not zero or a positive integer, the function Y (x) is defined by the equation

Y, (x) = (cos pm) J,(x) — J_,(x) ' (85)
sin pw

This definition can be shown to be consistent with Equation (82) as p — n, and
it defines Y (x) as a linear combination of J ,(x) and J_ (x) otherwise. It should
be emphasized, however, that the second solution Y (x) is not needed unless
p=n.

The general solution of Bessel’s equation is frequently abbreviated by use
of the notation

y =Z,(x), (86)
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with the convention that (86) stands for (74) unless p is zero or a positive
integer, and for (84) in these cases.

The transformation y = ﬂ transforms (63) to the equation
x
d®u ( p:— 3;)
— 1l ——=)u=0 87
dx? * x? 87)
2
(see Problem 38, Chapter 1). For large values of x the term £ - iis

negligible in comparison with unity. Thus it may be expected that for large

values of x the behavior of solutions of (87) will be similar to that of
2

) . . u . .
corresponding solutions of the equation — 4 u# = 0. Since such solutions can
P g q I

be written in the form ¥ = A cos (x — @), where 4 and ¢ are constants, we
are led to the possibility that for large values of x any solution of (63) behaves
like the function

A e g,

for properly chosen values of 4 and ¢. A rather involved analysis shows that
for the function J,(x) one has

=2 and p=Gp+ 0T,
v 4
whereas for Y (x) there follows

2
A2=J‘ and 9’2=E+991-
' 2

Thus we may write

Jo(x) ~ 2 cos (x — a,)

X
— [ (x> ) (88)
Yuyujigux—a)
i wX P J
where a, =(2p+ 1) :—: . (89)

The notation of (88) denotes that the ratio of two expressions connected by the
symbol ~ approaches unity as x — co. We say thatJ (x) behaves asymptotically

like .| — cos (x — o).
X
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It follows from (88) that the complex function J (x) + i Y (x) has the
asymptotic behavior

J ) + i Y, (x) ~ J ;’; e (x> ), (90)

whereas the conjugate complex function has the behavior

J(x) — i Y(x) ~ J 2 pmilema)  (x o). (91)
wX

These complex functions are known as «Bessel functions of the third kind, or,
more generally, as the Hankel functions of the first and second kinds, respectively,
and the notations

HO(x) = J (x) + i Yp(x)] (92)

H2(x) = Jy(x) — i Y,(x)

are conventional. These functions are particularly useful in studying certain
types of wave propagation (see Section 9.13).
The differential equation

d*y | _dy
o=+ x=2L —(p*+xHy=0, 93
dx® dx ( )y ®3)
which differs from Bessel’s equation (63) only in the sign of x? in the coefficient
of y, is transformed by the substitution ix = ¢ to the equation

d? d
rﬁd—g+td—f+(t2—p2)y=0,

which is in the form of Bessel’s equation (63). Hence, the general solution is of
the form y = Z (#), or, in terms of the original variable x, the general solution
of (93) is

y = Z (ix). (94)

That is, if p is not zero or a positive integer, the general solution is of the form
¥ = e (ix) + e J_ (i),
whereas otherwise it may be taken in the form
¥y = Jy(i%) + ¢ Y, ().
From Equation (69) we have

w3
,,

& Kl(ktp)! =',c=zok!(k+p)!'
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In place of using this function as a fundamental solution of (93), it is preferable
to use the function I (x) = i—?J (ix),

g

I (x )—Z (95)

Siktk+pr

since this function is real for real values of p. This function is known as the
modified Bessel function of the first kind, of order p. The terms in the series
representing /,(x) differ from those in the series for J (x) only in that the
terms are all positive in the 7, series, whereas they alternate in sign in the J
series. Thus, if p is not zero or a positive integer, the general solution of (93)
can be taken in the real form

Y = Zy(ix) = e 1(x) + ¢ I_,(x). (96)

As a second real fundamental solution of (93), in the case when p = n,
where n is zero or a positive integer, it is conventional to define the function
K,(x) by the equation

K (x) = ’5’ "t (ix) + i Y, (ix)] = ’-2’ "t 1HWx), (97)

leading to the general solution
Y = Z,(ix) = ¢, I,(x) + ¢ K,(x), (98)

when n is zero or a positive integer. The function K, (x) is known as the
modified Bessel function of the second kind, of order n.

If p is not zero or a positive integer, the function K (x) is defined by the
equation
m () = I(x)

2 sin pm

Ky(x) = (99)

which is consistent with (97) when p — n.
For large values of x the modified functions have the asymptotic behavior

eﬂ:

I(x) ~ T

-z > — . 100
K (x) o £ (x — ) (100)

«/2
- X
ﬂ -

It is important to notice that the right members of (100) are independent of p.

4.9. Properties of Bessel functions. It is readily verified directly that all
power series involved in the definitions of all Bessel functions converge for all
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finite values of x. However, in consequence of the fact that these series are in
many cases multiplied by a negative power of x or by a logarithmic term, it is
found that only the functions J (x) and I (x) are finite at x = 0 (when p = 0).

For small values of x, retention of the leading terms in the respective series
leads to the approximations

21’

J:n(x) ~ 271 x?, J—p(x) ~ (_p)' x~ %, (101)
Y~ — 22D (p£0),  Y)~logx,  (102)
I(x) ~ 1 x?, I_(x)~ ’ x~%, (103)

2%p! (—p)!
K()~27Y p—D!'x? (p#0), Kyx)~ —logux, (104)

in the sense that the ratio of two quantities connected by the symbol ~
approaches unity as x — 0.

For large values of x (x — ), we recapitulate the results listed in the
preceding section:

JP(X)NA/%COS (x —7:: — p—-;-T),
Y,(x) ~ J% sin (x — % — p—z”) (105)

e — T BT —1i m—l—p—r
HLI)(X)NJ,%Ce( 2 P~ 2T CTT (106)

&L

e T
—, K(x)~,[—e " 107
v 2mx o) 2x (107)

The following derivative formulas are of frequent us