Métodos Matemáticos de la Física

aceves@astrosen.unam.mx

$\underline{\text{Tarea} \# 5}$

- 1.) Operadores Autoadjuntos (AA). Considere el conjunto de funciones $\{f(x)\}$, de variable real, definidos en el intervalo $x \in (-\infty, +\infty)$, tal que $\to 0$ tan rápido al menos como 1/x a medida que $x \to \pm \infty$. Determine cuál de los siguientes operadores es AA cuando actúa sobre $\{f(x)\}$:
 - (a) $\frac{\mathrm{d}}{\mathrm{d}x} + x$, (b) $-i\frac{\mathrm{d}}{\mathrm{d}x} + x^2$, (c) $ix\frac{\mathrm{d}}{\mathrm{d}x}$, (d) $i\frac{\mathrm{d}^3}{\mathrm{d}x^3}$.
- 2.) Expansión en Eigenfunciones. Encuentre una expansión en eigenfunciones para la solución del problema de frontera de la ecuación inhomogénea

$$Ly = \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} + k^2 y = f(x), \qquad y(0) = y(\pi) = 0,$$

donde k es una constante y

$$f(x) = \begin{cases} x & 0 \le x \le \pi/2 \\ \pi - x & \pi/2 \le x \le \pi \end{cases}$$

Recuerde que tiene que resolver primero el problema de eigenvalor $Ly_n = \lambda_n y_n$. Nótese que $L = L^{\dagger}$, por lo que sus eigenfunciones forman una base.

3.) Solución por Eigenfunciones. Encuentre las eigenfunciones normalizadas $y_n(x)$ (i.e., $\langle y_n|y_n\rangle=1$) y los eigenvalores λ_n del operador L definido por

$$Ly = x^2y'' + 2xy' + \frac{1}{4}y, \qquad x \in [1, e]$$

con condiciones de frontera y(1) = y(e) = 0. Encuentre, como una serie de eigenfunciones la solución para el problema inhomogéneo:

$$Ly = \frac{1}{\sqrt{x}}$$
.

Sugerencia: puede hacer el cambio de variable $x = e^t$ para hacer más manejable la ecuación