La evolución de las nebulosas planetarias Un baile de dos: La estrella central y la cáscara nebular

La evolución de las nebulosas planetarias

- Las nebulosas planetarias incluyen dos componentes:
 - la estrella central
 - la cáscara nebular
- Hasta cierto punto la evolución de cada componente es independiente:
 - La evolución de la estrella central depende fuertemente de la masa de la estrella progenitora (temperatura, luminosidad, tasa evolutiva). Todo es más rápido a mayor masa.
 - La evolución de la cáscara nebular depende débilmente de la masa de la estrella progenitora (velocidad de eyección).
 - La evolución de ambas depende de la composición química.
- La evolución de la estrella central influye en la evolución de la cáscara nebular (pero no viceversa).

La evolución de las nebulosas planetarias

- La evolución de la cáscara nebular:
 - es eyectada por el viento estelar cuando la estrella progenitora asciende la rama AGB, se expande en el espacio.
 - es acelerada debido a la ionización por la estrella central.
 - es acelerada debido al viento de la estrella central.
- La evolución de la estrella central resulta de:
 - la combustión nuclear, la cual "come" la envolvente desde el interior.
 - el viento estelar, el cual quita la envolvente desde el exterior.
 - la contracción gravitatoria, la cual transforma el núcleo en una enana blanca (y provee la luminosidad una vez que se acaba la combustión nuclear).
 - La rapidez con que cambia lo anterior depende de la masa de la estrella progenitora (porque determina la masa del remanente).

La evolución de las nebulosas planetarias

La evolución de las nebulosas planetarias

Ambos procesos continúan hasta que se apagan la combustión nuclear y el viento estelar.

Cuando la envolvente remanente está < $10^{-2} M_{\odot}$, la estrella abandona la AGB.

Cuando la envolvente es demasiado delgada para mantener la temperatura de las capas de combustión nuclear, se para ese proceso.

NP: luminosidad de la estrella

La estrella abandona la AGB cuando la envolvente es demasiado delgada para "opacar" a la cáscara de combustión nuclear.

NP: luminosidad de la estrella

NP: el radio de la estrella

NP: el radio de la estrella

Durante toda la evolución post-AGB, parte de la luminosidad (o toda) viene de la contracción gravitatoria

$$g = \frac{GM}{R^2}$$

$$\Rightarrow \frac{dg}{dt} = -2\frac{GM}{R^3}\frac{dR}{dt} > 0$$

ya que $\frac{dR}{dt} < 0$.

Como consecuencia, la velocidad de escape también aumenta continuamente, lo cual implica un aumento continuo en la velocidad del viento estelar.

NP: el viento de la estrella

NP: tiempo evolutivo

NP: tiempo evolutivo

NP: tiempo evolutivo

La teoría de dos vientos

- Kwok et al. (1978) postularon que las nebulosas planetarias resultan de la interacción de dos vientos estelares:
 - el viento emitido por la estrella progenitora cuando estuvo en su etapa AGB (viento denso y lento)
 - el viento que emite la estrella central de la nebulosa planetaria (viento difuso y rápido)
- El choque de estos dos vientos produce una cáscara delgada en la cara "interior" del viento emitido en la AGB que vemos como la nebulosa planetaria.
- En realidad, sabemos que es un viento más o menos continuo, pero hay dos épocas cuando es más fuerte. Eso aproximan los "dos vientos" de Kwok et al. (1978).

La evolución del viento

- Hay varias fases evolutivas.
- El viento es lento, del orden de 10 km/s.
- El viento es denso, la pérdida de masa puede alcanzar 10⁻⁴ M_☉/año.

La evolución del viento

- Para la estrella central:
 - la tasa de pérdida de masa disminuye con el tiempo.
 - el viento es inicialmente lento, pero su velocidad aumenta con el tiempo.
 - se espera que la velocidad eventual es función de la metalicidad.
- Obviamente, este viento rápido chocará con el viento lento de la AGB.

Mellema (1994, A&A, 290, 915)

La evolución de la estrella central

La interacción hidrodinámica

Esto es lo que vemos como la nebulosa planetaria

- **zona a**: el viento estelar fluye libremente
- zona b: burbuja caliente; fase "energy driven"
- zona c: viento AGB chocado
- zona d: viento AGB no chocado
- C: punto de choque entre los dos vientos

- S₁: choque interno (fase "energy driven")
- S₂: choque externo

Rozas et al. (2007, A&A, 467, 603)

¿Qué esperamos observar?

- La velocidad de expansión será inicialmente la del viento AGB, 5-15 km/s.
- Al pasar el frente de ionización, aumentará la velocidad de expansión por 5-6 km/s.
- Luego, la burbuja caliente acelerará la cáscara nebular por 5-10 km/s o más, dependiendo de la metalicidad.
- ¿Se apaga el viento estelar?

¿Qué observamos?

Richer et al. (2010, ApJ, 716, 857) anchura intrínseca de la línea (Hα; km/s)

Resumiendo

- Las nebulosas planetarias son objetos dinámicos.
- Tanto la estrella central como la cáscara nebular evolucionan.
- Su apariencia se debe a la interacción de la estrella central y la cáscara nebular.
- Existen durante solamente $\sim 10,000$ años.
 - Cuando la estrella central evoluciona muy lentamente (progenitora de baja masa), disipa la cáscara nebular antes de ionizarse.