# Proyecto de investigación: La discrepancia de abundancias

#### **Objetivo específico:**

¿Son las distribuciones espaciales de la emisión en la línea de [O III] y las líneas de C II, N II y O II compatibles con su origen en una sola componente de plasma que es químicamente homogénea?

# Contexto: La discrepancia de abundancias

- Wyse (1942, ApJ, 95, 356) fue el primero quien determinó abundancias de O<sup>++</sup> a partir de las líneas de O II, encontrando un valor mucho mayor al encontrado de las líneas de [O III].
- A lo largo de las décadas que siguen, el resultado se repite, casi sin excepción.
- Desde la década de los 1990, se reconoce que hay una diferencia sistemática entre las abundancias calculadas de las líneas O II y [O III], con la primera siendo la mayor.
- Esta diferencia se conoce como la "discrepancia de abundancias". Hoy en día es conocida para C, N, O y Ne.
- Típicamente, las líneas de O II indican una abundancia 2 3 veces mayor a la indicada por las líneas de [O III], pero en ~20% de las nebulosas planetarias la diferencia es > 5 y el record (A46) irebasa un factor de 100!
- El factor de diferencia entre las abundancias calculadas con ambas clases de línea se conoce como el "factor de discrepancia de abundancias" (ADF por sus siglas en inglés).
- La discrepancia de abundancias se conoce también en regiones H II, donde casi siempre el factor de discrepancia es de 2 – 3.
- Referencias generales del tema:
  - Peimbert & Peimbert 2006, <u>https://articles.adsabs.harvard.edu/pdf/2006IAUS..234..227P</u>
  - Bohigas 2009, <u>http://www.astroscu.unam.mx/rmaa/RMxAA..45-1/PDF/RMxAA..45-1\_jbohigas.pdf</u>
  - Liu 2010, <u>https://arxiv.org/pdf/1001.3715.pdf</u>

### Contexto: Tendencias

- Desde los años 1980-1990, se reconoce que la emisión en las líneas permitidas es menos extendida espacialmente que la emisión en las líneas prohibidas.
  - Barker 1982, <u>https://articles.adsabs.harvard.edu/pdf/1982ApJ...253..167B</u>
  - Barker 1991, https://articles.adsabs.harvard.edu/pdf/1991ApJ...371..217B
  - Garnett & Dinerstein 2001, <a href="https://iopscience.iop.org/article/10.1086/322452/pdf">https://iopscience.iop.org/article/10.1086/322452/pdf</a>
  - Tsamis et al. 2008, https://articles.adsabs.harvard.edu/pdf/2008MNRAS.386...22T
  - García Rojas et al. 2016, <u>https://iopscience.iop.org/article/10.3847/2041-8205/824/2/L27/pdf</u>





FIG. 5.—The [O III] ( $\lambda$ :4959 + 5007) intensity profile along the slit (*solid* line) compared with O II  $\lambda$ 4661 (*dotted* line) and H $\beta$  (*dashed* line) in NGC 6720. Note that the O II emission peaks interior to [O III] and H $\beta$ .

 Figure 2. Preliminary maps of the O II  $\lambda\lambda4649+50$  ORL (left panels) and [O III]  $\lambda4959$  CEL emissions from two PNe of our sample: NGC 6778 (ADF~20, top panels), and M1-42 (ADF~20, bottom panels). It is worth re-emphasising that the O II and [O III] emissions come from the same ion: O<sup>2+</sup>. The "x" marks a reference spaxel.

#### Contexto: Tendencias

- Desde la década de los 2000, se reconoce que el ADF para los elementos C, N, O y Ne es similar.
  - Esto es una de las restricciones más importantes sobre el enriquecimiento que puede dar origen al ADF.
  - Liu et al. 2000, <u>https://articles.adsabs.harvard.edu/pdf/2000MNRAS.312..585L</u>
- Recientemente, se ha notado una correlación entre la binariedad de las estrellas centrales y un ADF alto.
  - Jones & Boffin 2017, <u>https://www.nature.com/articles/s41550-017-0117</u>
  - Wesson et al. 2018, <u>https://academic.oup.com/mnras/article/480/4/4589/5055627</u>
  - Lo anterior es cualitativa. Más recientemente, Bautista & Ahmed (2018) ofrecieron una explicación cuantitativa de ADFs altos cuando no hay equilibrio de ionización a raíz de la variación temporal de la radiación ionizante debido a eclipses entre estrellas binarias cercanas. Bautista & Ahmed 2018, https://iopscience.iop.org/article/10.3847/1538-4357/aad95a/pdf

https://www.nebulousresearch.org/adfs/ Ranked values of the abundance discrepancy



# Contexto: Tendencias

- Se acumula evidencia de que la cinemática de las líneas permitidas no es la esperada.
  - Richer et al. 2013, https://iopscience.iop.org/article/10.1088/0004-637X/773/2/133/pdf
  - Richer et al. 2017, <u>https://iopscience.iop.org/article/10.3847/1538-3881/aa5f53/pdf</u>
  - Peña et al. 2017, https://academic.oup.com/mnras/article/472/1/1182/4110288



# Contexto: espectroscopia de alta resolución

- Nuestros estudios anteriores utilizan espectroscopia de alta resolución para investigar la distribución espectral a lo largo de la línea de vista.
- Los resultados son muy detallados, pero se refieren a una pequeña parte del objeto.



# Contexto: distribución espectral

- Espectroscopia de alta resolución distingue los movimientos internos de la nebulosa, debido al efecto Doppler. Construimos diagramas posición-velocidad (diagramas PV).
- Vemos las caras de en frente y atrás individualmente.
- Tienen la misma velocidad en el borde, donde el movimiento es perpendicular a la línea de vista.



# Contexto: distribución espectral

- Se presentan diagramas PV en varias líneas, de alto a bajo grado de ionización.
- Las líneas punteadas indican la velocidad media de las dos "patas" en el primer cuadro.
- Los perfiles se abren conforme baja el grado de ionización (las "patas" se separan). A la par, se extienden a mayor altura (distancia desde la estrella central, que se ve en el primer cuadro).
- La materia de menor grado de ionización expande más rápidamente y se encuentra más lejos de la estrella central.
- Se trata de la materia vista por la rendija, resuelto en velocidad a lo largo de la línea de vista. Estos espectros permiten ver la estructura en la "tercera dimensión", perpendicular al plano del cielo.
- En las imágenes, no vemos la estructura a lo largo de la línea de vista (perpendicular al plano del cielo), porque el objeto es transparente. (Es como ver una imagen de rayos X.)





# Por si dudaban de que las nebulosas son transparentes...



### Contexto: distribución espectral

- En nuestros estudios anteriores, investigamos el exceso de emisión en O II con respecto a [O III].
- Se presenta en términos del ADF de O<sup>++</sup> calculada de dos maneras.
- El exceso de emisión ocurre en velocidades cercanas a la velocidad sistémica y posiciones cercanas a la estrella central, que corresponde a la parte interna de la cáscara nebular.
- Calculamos que el exceso es equivalente a más o menos la mitad de la masa en O<sup>++</sup>. Es un efecto MUY importante.
- No obstante, estrictamente, este resultado se limita a una pequeña parte del objeto, la parte vista por la rendija (ver la lámina 7).



### Su experimento

- Propongo que ustedes investigan el exceso de emisión en C II, N II y O II con respecto a [O III] en la totalidad de NGC 7009.
- Objetivo específico: ¿Son las distribuciones espaciales de la emisión en la línea de [O III] y las líneas de C II, N II y O II compatibles con su origen en una sola componente de plasma que es químicamente homogénea?
- Usarán espectroscopia de campo integral de baja resolución obtenida con el espectrógrafo MUSE en el telescopio VLT de la ESO.

#### Su experimento

- Se presentan imágenes de NGC 7009 en varias líneas, de alto a bajo grado de ionización. (Son las mismas líneas que en la lámina 8.)
- Cambia la estructura conforme cambia el grado de ionización.
- El material más altamente ionizado ocupa el volumen más interno.
- El material menos ionizado se encuentra en los volúmenes más aislados. Realmente, están mayormente en estructuras externas a la estructura principal de la cáscara nebular.
- Aquí, no sabemos nada de lo que es más cercano o más alejado, pero vemos la estructura completa de la nebulosa proyectada en el cielo.





# Su experimento

- Aquí tenemos las imágenes en las líneas permitidas más brillantes de C II, N II y O II así como la línea prohibida de [O III]  $\lambda$ 4959.
- (El ion que da origen a tanto las líneas de recombinación de O II como a las de [O III] es el O<sup>++</sup>.)
- Es notoria la similitud de la estructura de las imágenes en las líneas de C II, N II y O II.
- La estructura en [O III] es distinta: El contraste entre la cáscara principal y la emisión exterior es menor.
  - Esto implica que hay un exceso de emisión en O II en la parte interna de la cáscara nebular.
  - Dada la estructura tan similar en las líneas de C II, N II y O II, pareciera ser una característica general de estas líneas.





# Su experimento

- La idea básica es usar la imagen de [O III]  $\lambda4959$  como patrón de la emisión que emite el plasma que lo emite.
- Ese mismo plasma también emitirá en las líneas de O II  $\lambda$ 4662, estas líneas se emiten como parte del equilibrio de ionización (un poco de [O III]  $\lambda$ 4959 también).
- Con los coeficientes de emisión de [O III] λ4959 y O II λ4662 (siguiente lámina), se puede convertir el patrón de [O III] λ4959 en el patrón esperado para O II λ4662. Esto requiere adoptar una temperatura (ver apuntes anteriores).
- Así, se obtiene la emisión en O II  $\lambda4662$  predicha para el plasma que emite en [O III]  $\lambda4959.$
- Se puede sustraer este patrón de la imagen observada en O II  $\lambda$ 4662 para ver si es factible que el plasma que emite [O III]  $\lambda$ 4959 es responsable por toda la emisión que se observa en O II  $\lambda$ 4662.
- En caso contrario, ¿pueden cambios en la temperatura (o densidad) explicar la diferencia? Si no, debe existir otra componente de plasma que contribuye parte de la emisión en O II λ4662.
  - ¿Cuál fracción de la emisión contribuye?
  - ¿Cuál fracción de la masa de O<sup>++</sup> puede representar?



### Su experimento

- Estas gráficas presentan los coeficientes de emisión de distintas líneas de N II, O II, O III, [O III] y H I.
- El cociente de estos coeficientes es el factor de conversión para predecir la emisión en estas líneas usando otra línea como patrón.
- Para líneas que se originan de un ion, O<sup>++</sup> digamos, se requiere solamente el cociente de los coeficientes de emisión.
- Para líneas que se originan de distintos iones, O<sup>++</sup> y N<sup>++</sup>, por ejemplo, se requiere también el cociente de las abundancias, N<sup>++</sup>/O<sup>++</sup> en este caso, lo cual adoptaremos de la literatura.
- Podemos hacer lo anterior cuando se tratan de iones que ocupan volúmenes muy similares, como es el caso para C<sup>++</sup>, N<sup>++</sup> y O<sup>++</sup>.



### Su experimento

- Cosas "extras":
  - Aquí, se presentan las imágenes en más líneas que podrían estar asociadas a la misma componente de plasma que emite en O II λ4662 (salvo [O III] λ4959).
  - A primera vista, solamente la imagen en las líneas de O I λλ7771,7774,7775 parece tener la misma forma como la imagen de O II λ4662.
  - Cada caso representa un rompecabezas para determinar cual(es) componente(s) de plasma contribuyen a su emisión.
  - Esto tendrá que resolverse cuantitativamente en base a cálculos de la emisión esperada usando datos atómicos.

